Fast Intersections for Subdivision Surfaces

  • Aaron Severn
  • Faramarz Samavati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)


Subdivision surface intersections can be costly to compute. They require the intersection of high resolution meshes in order to obtain accurate results, which can lead to slow performance and high memory usage. In this paper we show how the strong convex hull property can lead to a method for efficiently computing intersections at high resolutions. Consequently, the method can be used with any subdivision scheme that has the strong convex hull property. In this method, a bipartite graph structure is used to track potentially intersecting faces.


Convex Hull Bipartite Graph Collision Detection Subdivision Scheme Subdivision Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ALIAS|WAVEFRONT: Maya (2002),
  2. 2.
    Biermann, H., Kristjansson, D., Zorin, D.: Approximate Boolean operations on free-form solids. In: Proceedings of SIGGRAPH, pp. 185–194 (2001)Google Scholar
  3. 3.
    DeRose, T., Kass, M., Truong, T.: Subdivision surfaces in character animation. In: Proceedings of SIGGRAPH, pp. 85–94 (1998)Google Scholar
  4. 4.
    Epstein, D., Gharachorloo, N., Jansen, F., Rossignac, J., Zoulos, C.: Multiple depth-buffer rendering of csg. Technical report, IBM Research Report (1989)Google Scholar
  5. 5.
    Goldfeather, J., Hultquist, J.P.M., Fuchs, H.: Fast constructive solid geometry in the pixel-powers graphics system. In: Proceedings of SIGGRAPH, pp. 107–116 (1986)Google Scholar
  6. 6.
    Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A hierarchical structure for rapid interference detection. Computer Aided Geometric Design 3(4), 295–311 (1986)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Grinspun, E., Schröder, P.: Normal bounds for subdivision-surface interference detection. In: Proceedings of the conference on Visualization, pp. 333–340 (2001)Google Scholar
  8. 8.
    Hohmeyer, M.E.: Robust and efficient intersection for solid modeling. PhD thesis, UC Berkeley (1992)Google Scholar
  9. 9.
    Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proceedings of SIGGRAPH, pp. 295–302 (1994)Google Scholar
  10. 10.
    Keyser, J., Krishnan, S., Manocha, D.: Efficient and accurate b-rep generation of low degree sculptured solids using exact arithmetic: I-representations. Computer Aided Geometric Design 16(9), 841–859 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Keyser, J., Krishnan, S., Manocha, D.: Efficient and accurate b-rep generation of low degree sculptured solids using exact arithmetic: II-computation. Computer Aided Geometric Design 16(9), 861–882 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Krishnan, S., Manocha, D.: An efficient surface intersection algorithm based on lower-dimensional formulation. ACM Transactions on Graphics 16(1), 74–106 (1997)CrossRefGoogle Scholar
  13. 13.
    Lanquetin, S., Foufou, S., Kheddouci, H., Neveu, M.: A graph based algorithm for intersection of subdivision surfaces. In: ICCSA 2003, vol. 3, pp. 387–396 (2003)Google Scholar
  14. 14.
    Lin, M., Gottschalk, S.: Collision detection between geometric models: A survey. In: Proceedings of IMA Conference on Mathematics of Surfaces (1998)Google Scholar
  15. 15.
    Litke, N., Levin, A., Schröder, P.: Trimming for subdivision surfaces. Computer Aided Geometric Design 18(5), 429–454 (2001)CrossRefMathSciNetGoogle Scholar
  16. 16.
    MPEG 4 Committee: MPEG 4 Standard (2002)Google Scholar
  17. 17.
    Rabbitz, R.: Fast Collision Detection of Moving Convex Polyhedra. Graphics Gems IV, 83–109 (1994)Google Scholar
  18. 18.
    Rappoport, A., Spitz, S.: Interactive Boolean operations for conceptual design of 3-d solids. In: Proceedings of SIGGRAPH, pp. 269–278 (1997)Google Scholar
  19. 19.
    Schröder, P.: Subdivision as a fundamental building block of digital geometry processing algorithms. Journal of Computational and Applied Mathematics 149(1), 207–219 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Schweitzer, J.E.: Analysis and application of subdivision surfaces. PhD Thesis, University of Washington (1996)Google Scholar
  21. 21.
    Wu, X., Peters, J.: Interference detection for subdivision surfaces. Computer Graphics Forum 23(3), 577–584 (2004)CrossRefGoogle Scholar
  22. 22.
    Zachmann, G.: Minimal hierarchical collision detection. In: Proceedings of the ACM symposium on Virtual reality software and technology, pp. 121–128 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aaron Severn
    • 1
  • Faramarz Samavati
    • 1
  1. 1.Department of Computer ScienceUniversity of Calgary 

Personalised recommendations