Advertisement

Autoregressive Models of Speech Signal Variability in the Speech Commands Statistical Distinction

  • Victor Krasheninnikov
  • Andrey Armer
  • Natalia Krasheninnikova
  • Valery Derevyankin
  • Victor Kozhevnikov
  • Nikolay Makarov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)

Abstract

In the task of speech commands (SC) statistical distinction the SC variability models application considerably simplifies both the likelihood ratio construction procedure, and the likelihood ratio expression itself, reducing it to well-known criterion χ-square. Computer modeling allows us to use SC variability models at SC distinction decision rule synthesis.

Keywords

Autoregressive Model Variability Model Multiple Recurrence Audio Processing Speech Command 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Repin, V.G., Tartakovskiy, G.P.: The statistical analysis at a priori uncertainty and information systems adaptation. Sovetskoe Radio, Moskow (1977) [in Russian]Google Scholar
  2. 2.
    Fant, G.: Acoustic Theory of Speech Production. The Hague, Mouton (1970)Google Scholar
  3. 3.
    Flanagan, J.L.: Speech Analysis, Synthesis and Perception, 2nd edn. Springer, New York (1972)Google Scholar
  4. 4.
    Rabiner, L.R., Schafer, R.W.: Digital Processing of Speech Signals. Prentice-Hall, Inc., Englewood Cliffs (1978)Google Scholar
  5. 5.
    Chuchupal, V., Makovkin, K., Gorokhovsky, K., Chichagov, A.: A Study of the Acoustic Model Choice for Russian Speech Recognition. In: Proc. of Intern. Workshop Speech and Computer SPECOM, pp. 53–57 (2002)Google Scholar
  6. 6.
    Lucke, H.: Which Stochastic Models Allow Baum-Welch Training? IEEE Trans. Signal Processing 44(11), 2746–2756 (1996)CrossRefGoogle Scholar
  7. 7.
    Peinado, A., Segura, J., Rubio, A., Garcia, P., Perez, J.: Discriminative Codebook Design Using Multiple Vector Quantization in HMM-Based Speech Recognizers. IEEE Trans. Speech and Audio Processing 4(2), 89–94 (1996)CrossRefGoogle Scholar
  8. 8.
    Shahshahani, B.: A Markov Random Field Approach to Bayesian Speaker Adaptation. IEEE Trans. Speech and Audio Processing 5(2), 183–191 (1997)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Krasheninnikov, V.R., Armer, A.I., Derevyankin, V.P., Kozhevnikov, V.I., Makarov, N.N.: The Speech Commands Variability Simulation. In: Proc. of Intern. Conf. on Concurrent Engineering, Lubbock, USA, pp. 387–390 (2005)Google Scholar
  10. 10.
    Krasheninnikov, V.R., Armer, A.I.: Speech Command Variations Simulation at Different Pronounciations. In: Proc. of the Second IASTED International Multi-Conference on Automation control and information trchnology, Novosibirsk, pp. 155–158 (2005)Google Scholar
  11. 11.
    Krasheninnikov, V.R., Armer, A.I.: Speech commands variability model. Vestnik UlGTU No. 4/2004, Ulyanovsk, pp. 44–46 (2004) [in Russian]Google Scholar
  12. 12.
    Habibi, A.: Two-dimensional Bayesian Estimate of Images. Proc. of IEEE 60, 873–883 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Victor Krasheninnikov
    • 1
  • Andrey Armer
    • 1
  • Natalia Krasheninnikova
    • 2
  • Valery Derevyankin
    • 3
  • Victor Kozhevnikov
    • 3
  • Nikolay Makarov
    • 3
  1. 1.Ulyanovsk State Technical UniversityUlyanovskRussia
  2. 2.Ulyanovsk State UniversityUlyanovskRussia
  3. 3.Ulyanovsk Instrument Manufacturing Design BureauUlyanovskRussia

Personalised recommendations