Advertisement

Rapid Determination of Compound Rifampicin Tablets Using Near Infrared Spectroscopy with Artificial Neural Network

  • Weiliang Guo
  • Qingfan Meng
  • Jiahui Lu
  • Chaojun Jiang
  • Yanchun Liang
  • Lirong Teng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3980)

Abstract

This paper has investigated the application of near infrared (NIR) spectroscopy with artificial neural network (ANN) for synchronous and rapid determination of rifampicin, isoniazid and pyrazinamide in compound rifampicin tablets. We have developed Back-Propagation (BP) Networks which adopted Levenberg-Marquardt training algorithm and Log-sigmoid transfer function basing on NIR spectra of samples and contents of rifampicin, isoniazid and pyrazinamide. The degree of approximation, a new evaluation criterion of the network was employed, which proved the accuracy of the predicted results. The BP Networks have been optimized by selecting suitable topologic structure parameters and the best numbers of training. Using these BP Networks for predicting the amounts of rifampicin, isoniazid and pyrazinamide in prediction set, the root mean square error of prediction (RMSEP) are 0.00668, 0.00508 and 0.00680. These results demonstrate that this method is feasible. This method is convenient, rapid, has no pretreatment and no pollution.

Keywords

Root Mean Square Error Hide Node Input Node Rapid Determination Near Infrared Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gurumurrthy, P., Ramachandran, G., Vijayalakshmi, S., Hemanth-Kumar, A.K. (eds.): Bioavailability of rifampicin, isoniazid and pyrazinamide in a triple drug formulation: comparison of plasma and urine kinetics. Int. J. Tuberc. Lung. Dis. 3, 119–125 (1999)Google Scholar
  2. 2.
    Vij, J.C., Govil, A., Jain, N.K., Nath, T., Srivastava, D.K., Gulati, R., Triloki, N.: Bioavailability of rifampicin, isoniazid and pyrazinamide in patients with intestinal tuberculosis with malabsorption. Indian Journal of Tuberculosis 42, 211 (1995)Google Scholar
  3. 3.
    Espinosa-Mansilla, A., Acedo-Valenzuela, M.I., Munoz de la Pena, A., Salinas, F., Canada Canada, F.: Comparative study of partial least squares and a modification of hybrid linear analysis calibration in the simultaneous spectrophotometric determination of rifampicin, pyrazinamide and isoniazid. Anal. Chim. Acta. 427, 129–136 (2001)CrossRefGoogle Scholar
  4. 4.
    Acedo-Valenzuela, M.I., Espinosa-Mansilla, A., Munoz de la Pena, A., Canada Canada, F.: Determination of antitubercular drugs by micellar electrokinetic capillary chromatography (MEKC). Anal. Bioanal. Chem. 374, 432–437 (2002)CrossRefGoogle Scholar
  5. 5.
    Calleri, E., Lorenzi, E.D., Furlanetto, S., Massolini, G., Caccialanza, G.: Validation of a RPLC method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin in a pharmaceutical formulation. J. Pharm. Biomed. Anal. 19, 1089–1096 (2002)CrossRefGoogle Scholar
  6. 6.
    Smith, P.J., Van-Dyk, J., Fredericks, A.: Determination of rifampicin, isoniazid and pyrazinamide by high performance liquid chromatography after their simultaneous extraction from plasma. Int. J. Tuberc. Lung. Dis. 3, 325–328 (1999)Google Scholar
  7. 7.
    Argekar, A.P., Kunjir, S.S., Purandare, K.S.: Simultaneous determination of rifampicin, isoniazid and pyrazinamid by high performance thin layer chromatography. J. Pharm. Biomed. Anal. 4, 1645–1650 (1996)CrossRefGoogle Scholar
  8. 8.
    Nikolich, K., Sergides, C., Pittas, A.: The application of Near Infrared Reflectance Spectroscopy(NIRS) for the quantitative analysis of hydrocortisone in primary materials. J. Serb. Chem. Soc. 2846, 189–198 (2001)Google Scholar
  9. 9.
    Blanco, M., Villarroya, I.: NIR spectroscopy: A rapid-response analytical tool. Trends. Analyt. Chem. 21, 240–250 (2002)CrossRefGoogle Scholar
  10. 10.
    Marquardt, D.: An Algorithm for Least Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ying, D., Ying, S., Yu-Qiu, R., Yu-Lin, R.: Artificial neural network for simultaneous determination of two components of compound paracetamol and diphenhydramine hydrochloride powder on NIR spectroscopy. Anal. Chim. Acta. 528, 55–61 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Weiliang Guo
    • 1
  • Qingfan Meng
    • 1
  • Jiahui Lu
    • 1
  • Chaojun Jiang
    • 1
  • Yanchun Liang
    • 2
  • Lirong Teng
    • 1
  1. 1.College of Life ScienceJilin UniversityChangchunChina
  2. 2.College of Computer ScienceJilin UniversityChangchunChina

Personalised recommendations