An Improved Case-Based Approach to LTL Model Checking

  • Fei Pu
  • Wenhui Zhang
  • Shaochun Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3943)


The state space explosion is the key obstacle of model checking. Even a relatively small system specification may yield a very large state space. The case-based approach based on search space partition has been proposed in [18, 19] for reducing model checking complexity. This paper extends the approach by considering wider ranges of case-bases of models and multiple case-bases such that it can be applied to more types of applications. The improved approach also combines the search space partition and static analysis or expert knowledge for guaranteeing the completeness of the cases. The case study demonstrates the potential advantages of the strategy and show that the strategy may improve the efficiency of system verification and therefore scale up the applicability of the verification approach.


Model Check Conjugate Variable Bound Model Check Linear Temporal Logic Formula Large State Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McMillan, K.L.: Verification of Infinite State Systems by Compositional Model Checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Bloem, R., Ravi, K., Somenzi, F.: Efficient Decision Procedures for Model Checking of Linear Time Logic Properties. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 222–235. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Amla, N., Kurshan, R., McMillan, K.L., Medel, R.: Experimental Analysis of Different Techniques for Bounded Model Checking. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 34–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    David, B.B., Eisner, C., Geist, D., Wolfsthal, Y.: Model Checking at IBM. Formal Methods in System Design 22, 101–108 (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Yorav, K., Ogumber: Static Analysis for Stats-Space Reductions Preserving Temporal Logics. Formal Methods in System Design 25, 67–96 (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Millett, L.I., Teitelbaum, T.: Issues in Slicing PROMELA and Its Application to Model Checking, Protocol Understanding, and Simulation. International Journal on Software Tools for Technology Transfer 2(4), 343–349 (2000)CrossRefMATHGoogle Scholar
  7. 7.
    Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2004)Google Scholar
  8. 8.
    Clark, E.M., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge (1999)Google Scholar
  9. 9.
    Maggi, P., Sisto, R.: Using SPIN to Verify Security Properties of Cryptographic Protocols. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 187–204. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Godefroid, P., Sistla, A.P.: Symmetric and Reduced Symmetry in Model Checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 91–103. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Bosnacki, D., Dams, D., Holenderski, L.: Symmetric Spin. International Journal on Software Tools for Technology Transfer 4, 92–106 (2002)CrossRefMATHGoogle Scholar
  12. 12.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  13. 13.
    Peled, D.: Ten Years of Partial Order Reduction. In: Y. Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall, Englewood Cliffs (1991)Google Scholar
  15. 15.
    Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. In: Proceedings of 9th International Conference on Tools and Algorithms for the Construction and Analysis of Systems(TACAS 1996). LNCS, vol. 1055, pp. 147–166. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Berezin, S., Campos, S., Clarke, E.M.: Compositional Reasoning in Model Checking. In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 81–102. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Emerson, E.A.: Temporal and Modal Logic. Handbook of Theoretical Computer Science (B), 997–1072 (1990)Google Scholar
  18. 18.
    Su, B., Zhang, W.: Search Space Partition and Case Basis Exploration for Reducing Model Checking Complexity. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 34–48. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Zhang, W.: Combining Static Analysis and Case-Based Search Space Partition for Reducing Peek Memory in Model Checking. Journal of Computer Science and Technology 18(6), 762–770 (2003)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fei Pu
    • 1
  • Wenhui Zhang
    • 1
  • Shaochun Wang
    • 1
  1. 1.Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations