A Review on Techniques for the Extraction of Transients in Musical Signals

  • Laurent Daudet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3902)


This paper presents some techniques for the extraction of transient components from a musical signal. The absence of a unique definition of what a “transient” means for signals that are by essence non-stationary implies that a lot of methods can be used and sometimes lead to significantly different results. We have classified some amongst the most common methods according to the nature of their outputs. Preliminary comparative results suggest that, for sharp percussive transients, the results are roughly independent of the chosen method, but that for slower rising attacks – e.g. for bowed string or wind instruments - the choice of method is critical.


Discrete Wavelet Transform Audio Signal Excitation Signal Onset Detection Short Time Fourier Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodwin, M., Avendano, C.: Enhancment of audio signals using transient detection and modification. In: Proc. AES 117th Conv., San Francisco, CA (2004)Google Scholar
  2. 2.
    Duxbury, C., Davies, M., Sandler, M.: Separation of transient information in musical audio using multiresolution analysis techniques. In: Proc. Digital Audio Effects (DAFx 2001), Limerick, Ireland (2001)Google Scholar
  3. 3.
    Verma, T., Levine, S., Meng, T.: Transient modeling synthesis: a flexible analysis/synthesis tool for transient signals. In: Proc. of the International Computer Music Conference, Greece (1997)Google Scholar
  4. 4.
    Bello, J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., Sandler, M.: A tutorial on onset detection in music signals. IEEE Transactions on Speech and Audio Processing (to appear)Google Scholar
  5. 5.
    Zölzer, U. (ed.): DAFX - Digital Audio Effects. John Wiley and Sons, Chichester (2002)Google Scholar
  6. 6.
    Bello, J., Duxbury, C., Davies, M., Sandle, r.M.: On the use of phase and energy for musical onset detection in the complex domain. IEEE Signal Processing Letters 11 (2004)Google Scholar
  7. 7.
    Rodet, X., Jaillet, F.: Detection and modeling of fast attack transients. In: Proceedings of the International Computer Music Conference, Havana (2001)Google Scholar
  8. 8.
    McAulay, R., Quatieri, T.: Speech analysis/synthesis based on a sinusoidal representation. IEEE Trans. on Acoust., Speech and Signal Proc. 34, 744–754 (1986)CrossRefGoogle Scholar
  9. 9.
    Serra, X., Smith, J.O.: Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Computer Music Journal 14, 12–24 (1990)CrossRefGoogle Scholar
  10. 10.
    Thornburg, H., Gouyon, F.: A flexible analysis-synthesis method for transients. In: Proceedings of the International Computer Music Conference, Berlin (2000)Google Scholar
  11. 11.
    Roy, R., Kailath, T.: ESPRIT - estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech and Signal Processing 37, 984–995 (1989)CrossRefMATHGoogle Scholar
  12. 12.
    Moon, T., Stirling, W.: Mathematical Methods and Algorithms for Signal Processing. Prentice-Hall, Englewood Cliffs (2000)Google Scholar
  13. 13.
    Badeau, R., David, B., Richard, G.: Yet Another Subspace Tracker. In: Proc. International Conf. on Acoustics, Speech, and Signal Processing, pp. 329–332 (2005)Google Scholar
  14. 14.
    Daudet, L., Torrésani, B.: Hybrid representations for audiophonic signal encoding. Signal Processing, Special issue on Image and Video Coding Beyond Standards 82, 1595–1617 (2002)MATHGoogle Scholar
  15. 15.
    Coifman, R., Wickerhauser, M.: Entropy–based algorithms for best basis selection. IEEE Trans. Information Theory 38, 1241–1243 (1992)CrossRefMATHGoogle Scholar
  16. 16.
    Jaillet, F., Torrésani, B.: Time-frequency jigsaw puzzle: Adaptive multiwindow and multilayered gabor expansions. IEEE Transactions on Signal Processing (submitted)Google Scholar
  17. 17.
    Davis, G.: Adaptive Nonlinear Approximations. PhD thesis, New York University (1994)Google Scholar
  18. 18.
    Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41, 3397–3415 (1993)CrossRefMATHGoogle Scholar
  19. 19.
    Daudet, L.: Sparse and structured decompositions of signals with the molecular matching pursuit. IEEE Transactions on Speech and Audio Processing (to appear)Google Scholar
  20. 20.
    Davies, M., Daudet, L.: Fast sparse subband decomposition using FIRSP. In: Proceedings of the 12th EUropean SIgnal Processing COnference (2004)Google Scholar
  21. 21.
    Davies, M., Daudet, L.: Sparse audio representations using the MCLT. Signal Processing (to appear)Google Scholar
  22. 22.
    Molla, S., Torrésani, B.: Determining local transientness of audio signals. IEEE Signal Processing Letters 11 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Laurent Daudet
    • 1
  1. 1.Laboratoire d’Acoustique MusicaleUniversité Pierre et Marie Curie (Paris 6)ParisFrance

Personalised recommendations