Implementing Temporal Logics: Tools for Execution and Proof

  • Michael Fisher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3900)


In this article I will present an overview of a selection of tools for execution and proof based on temporal logic, and outline both the general techniques used and problems encountered in implementing them. This selection is quite subjective, mainly concerning work that has involved researchers I have collaborated with at Liverpool (and, previously, Manchester). The tools considered will mainly be theorem-provers and (logic-based) agent programming languages


Model Check Modal Logic Temporal Logic Linear Temporal Logic Temporal Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Manna, Z.: Temporal Logic Programming. Journal of Symbolic Computation 8, 277–295 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Abadi, M.: The Power of Temporal Proofs. Theoretical Computer Science 64, 35–84 (1989)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barringer, H., Fisher, M., Gabbay, D., Gough, G., Owens, R.: METATEM: An Introduction. Formal Aspects of Computing 7(5), 533–549 (1995)CrossRefMATHGoogle Scholar
  4. 4.
    Barringer, H., Fisher, M., Gabbay, D., Owens, R., Reynolds, M. (eds.): The Imperative Future: Principles of Executable Temporal Logics. Research Studies Press, Chichester (1996)Google Scholar
  5. 5.
    Brotherston, J., Degtyarev, A., Fisher, M., Lisitsa, A.: Implementing Invariant Search via Temporal Resolution. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514, pp. 86–101. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: SymbolicModel Checking: 1020 states and beyond. In: Proceedings of the 5th Symposium on Logic in Computer Science, Philadelphia (June 1990)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Degtyarev, A., Fisher, M., Konev, B.: Monodic Temporal Resolution. ACM Transactions on Computational Logic 7(1) (January 2006)Google Scholar
  9. 9.
    Degtyarev, A., Fisher, M., Konev, B.: Handling equality in monodic temporal resolution. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 214–228. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Degtyarev, A., Fisher, M., Lisitsa, A.: Equality and Monodic First-Order Temporal Logic. Studia Logica 72(2), 147–156 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Degtyarev, A., Fisher, M., Konev, B.: A simplified clausal resolution procedure for propositional linear-time temporal logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, p. 85. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Dixon, C.: Strategies for Temporal Resolution. PhD thesis, Department of Computer Science, University of Manchester, Manchester M13 9PL, U.K. (December 1995)Google Scholar
  13. 13.
    Dixon, C.: Search Strategies for Resolution in Temporal Logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Dixon, C.: Temporal Resolution using a Breadth-First Search Algorithm. Annals of Mathematics and Artificial Intelligence 22, 87–115 (1998)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dixon, C.: Using Otter for Temporal Resolution. In: Advances in Temporal Logic. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  16. 16.
    Dixon, C.: Using Temporal Logics of Knowledge for Specification and Verification—a Case Study. Journal of Applied Logic, (2005) (to appear)Google Scholar
  17. 17.
    Dixon, C., Fernández Gago, M.-C., Fisher, M., van der Hoek, W.: Using temporal logics of knowledge in the formal verification of security protocols. In: Proceedings of International Symposium on Temporal Representation and Reasoning (TIME). IEEE CS Press, Los Alamitos (2004)Google Scholar
  18. 18.
    Dixon, C., Fisher, M.: Clausal Resolution for Logics of Time and Knowledge with Synchrony and Perfect Recall. In: Proceedings of Joint International Conference on Temporal Logic and Advances in Modal Logic (AiML-ICTL), Leipzig, Germany (October 2000)Google Scholar
  19. 19.
    Dixon, C., Fisher, M., Wooldridge, M.: Resolution for Temporal Logics of Knowledge. Journal of Logic and Computation 8(3), 345–372 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Emerson, E.A.: Temporal and Modal Logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, pp. 996–1072. Elsevier, Amsterdam (1990)Google Scholar
  21. 21.
    Fisher, M.: A Resolution Method for Temporal Logic. In: Proc. Twelfth International Joint Conference on Artificial Intelligence (IJCAI), Sydney, Australia. Morgan Kaufmann, San Francisco (1991)Google Scholar
  22. 22.
    Fisher, M.: Concurrent METATEM—A Language for Modeling Reactive Systems. In: Reeve, M., Bode, A., Wolf, G. (eds.) PARLE 1993. LNCS, vol. 694. Springer, Heidelberg (1993)Google Scholar
  23. 23.
    Fisher, M.: Representing and Executing Agent-Based Systems. In: Wooldridge, M., Jennings, N.R. (eds.) Intelligent Agents. Springer, Heidelberg (1995)Google Scholar
  24. 24.
    Fisher, M.: An Introduction to Executable Temporal Logics. Knowledge Engineering Review 11(1), 43–56 (1996)CrossRefGoogle Scholar
  25. 25.
    Fisher, M.: A Normal Form for Temporal Logic and its Application in Theorem-Proving and Execution. Journal of Logic and Computation 7(4), 429–456 (1997)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Fisher, M.: Implementing BDI-like Systems by Direct Execution. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann, San Francisco (1997)Google Scholar
  27. 27.
    Fisher, M.: Temporal Development Methods for Agent-Based Systems. Journal of Autonomous Agents and Multi-Agent Systems 10(1), 41–66 (2005)CrossRefGoogle Scholar
  28. 28.
    Fisher, M., Dixon, C., Peim, M.: Clausal Temporal Resolution. ACM Transactions on Computational Logic 2(1), 12–56 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Fisher, M., Ghidini, C.: Programming Resource-Bounded Deliberative Agents. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI). Morgan Kaufmann, San Francisco (1999)Google Scholar
  30. 30.
    Fisher, M., Ghidini, C.: The ABC of Rational Agent Programming. In: Proc. First International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 849–856. ACM Press, New York ( 2002)CrossRefGoogle Scholar
  31. 31.
    Fisher, M., Ghidini, C., Hirsch, B.: Organising Computation through Dynamic Grouping. In: Ryan, M.D., Meyer, J.-J.C., Ehrich, H.-D. (eds.) Objects, Agents, and Features. LNCS, vol. 2975, pp. 117–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Fisher, M., Ghidini, C., Hirsch, B.: Programming Groups of Rational Agents. In: Dix, J., Leite, J. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3259, pp. 849–856. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Fisher, M., Kakoudakis, T.: Flexible Agent Grouping in Executable Temporal Logic. In: Proceedings of Twelfth International Symposium on Languages for Intensional Programming (ISLIP). World Scientific, Singapore (1999)Google Scholar
  34. 34.
    Fisher, M., Owens, R.: From the Past to the Future: Executing Temporal Logic Programs. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  35. 35.
    Fernández Gago, M.-C., Hustadt, U., Dixon, C., Fisher, M., Konev, B.: First-Order Temporal Verification in Practice. Accepted for publication in Journal of Automated ReasoningGoogle Scholar
  36. 36.
    Hirsch, B., Fisher, M., Ghidini, C., Busetta, P.: Organising Software in Active Environments. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Hirsch, B.: Programming Rational Agents. PhD thesis, Department of Computer Science, University of Liverpool, United Kingdom (May 2005)Google Scholar
  38. 38.
    Hodkinson, I.: Monodic Packed Fragment with Equality is Decidable. Studia Logica 72(2), 185–197 (2002)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Hodkinson, I., Wolter, F., Zakharyashev, M.: Decidable fragments of first-order temporal logics. Annals of Pure and Applied Logic (2000)Google Scholar
  40. 40.
    Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice-Hall, Englewood Cliffs (1991)Google Scholar
  41. 41.
    Holzmann, G.J.: The model checker spin. IEEE Trans. on Software Engineering 23(5), 279–295 (1997); Special issue on Formal Methods in Software PracticeCrossRefGoogle Scholar
  42. 42.
    Hustadt, U., Konev, B.: TRP++ 2.0: A temporal resolution prover. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 274–278. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  43. 43.
    Hustadt, U., Schmidt, R.A.: Scientific benchmarking with temporal logic decision procedures. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.-A. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Eighth International Conference (KR 2002), pp. 533–544. Morgan Kaufmann, San Francisco (2002)Google Scholar
  44. 44.
    Hustadt, U., Konev, B., Riazanov, A., Voronkov, A.: TeMP: A temporal monodic prover. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 326–330. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  45. 45.
    Hustadt, U., Konev, B., Schmidt, R.A.: Deciding monodic fragments by temporal resolution. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 204–218. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  46. 46.
    Hustadt, U., Schmidt, R.A.: Formulae which highlight differences between temporal logic and dynamic logic provers. In: Giunchiglia, E., Massacci, F. (eds.) Issues in the Design and Experimental Evaluation of Systems for Modal and Temporal Logics, Technical Report DII 14/01, pp. 68–76. Dipartimento di Ingegneria dell’Informazione, Unversitá degli Studi di Siena (2001)Google Scholar
  47. 47.
    Huth, M., Ryan, M.: Logic in Computer Science. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  48. 48.
    Kellett, A.: Implementation Techniques for Concurrent METATEM. PhD thesis, Department of Computing and Mathematics, Manchester Metropolitan University (2000)Google Scholar
  49. 49.
    Kellett, A., Fisher, M.: Automata Representations for Concurrent METATEM. In: Proceedings of the Fourth International Workshop on Temporal Representation and Reasoning (TIME). IEEE Press, Los Alamitos (May 1997)Google Scholar
  50. 50.
    Konev, B., Degtyarev, A., Dixon, C., Fisher, M., Hustadt, U.: Mechanising first-order temporal resolution. Information and Computation 199(1-2), 55–86 (2005)MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Lynch, N.A., Tuttle, M.R.: An Introduction to Input/Output Automata. Technical Report MIT/LCS/TM-373, Laboratory for Computer Science, Massachusetts Institute of Technology (November 1988)Google Scholar
  52. 52.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, New York (1992)CrossRefMATHGoogle Scholar
  53. 53.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems: Safety. Springer, New York (1995)CrossRefMATHGoogle Scholar
  54. 54.
    Nalon, C., Dixon, C., Fisher, M.: Resolution for Synchrony and No Learning. In: Proceedings of Advances in Modal Logic Confernece (AiML-5), Manchester, UK (September 2004)Google Scholar
  55. 55.
    Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the Eighteenth Symposium on the Foundations of Computer Science, Providence, USA (November 1977)Google Scholar
  56. 56.
    Prior, A.: Past, Present and Future. Oxford University Press, Oxford (1967)CrossRefMATHGoogle Scholar
  57. 57.
    Riazanov, A., Voronkov, A.: Vampire 1.1 (system description). In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 376–380. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  58. 58.
    Sistla, A.P., Clarke, E.M.: Complexity of propositional linear temporal logics. ACM Journal 32(3), 733–749 (1985)MathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Szalas, A., Holenderski, L.: Incompleteness of First-Order Temporal Logic with Until. Theoretical Computer Science 57, 317–325 (1988)MathSciNetCrossRefMATHGoogle Scholar
  60. 60.
    Tarjan, R.: Depth-First Search and Linear Graph Algorithms. SIAM Journal on Computing 1, 146–160 (1972)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Visser, W., Havelund, K., Brat, G., Park, S.: Model checking programs. In: International Conference on Automated Software Engineering (ASE) (September 2000)Google Scholar
  62. 62.
    Wooldridge, M.: Reasoning about Rational Agents. MIT Press, Cambridge (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Fisher
    • 1
  1. 1.Logic and Computation Group, Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations