Strongly Complete Axiomatizations of “Knowing at Most” in Syntactic Structures

  • Thomas Ågotnes
  • Michal Walicki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3900)


Syntactic structures based on standard syntactic assignments model knowledge directly rather than as truth in all possible worlds as in modal epistemic logic, by assigning arbitrary truth values to atomic epistemic formulae. This approach to epistemic logic is very general and is used in several logical frameworks modeling multi-agent systems, but has no interesting logical properties — partly because the standard logical language is too weak to express properties of such structures. In this paper we extend the logical language with a new operator used to represent the proposition that an agent “knows at most” a given finite set of formulae and study the problem of strongly complete axiomatization of syntactic structures in this language. Since the logic is not semantically compact, a strongly complete finitary axiomatization is impossible. Instead we present, first, a strongly complete infinitary system, and, second, a strongly complete finitary system for a slightly weaker variant of the language.


Modal Logic Syntactic Structure Epistemic Logic Kripke Structure Logical Language 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)MATHGoogle Scholar
  2. 2.
    Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  3. 3.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  4. 4.
    Hintikka, J.: Impossible possible worlds vindicated. Journal of Philosophical Logic 4, 475–484 (1975)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Eberle, R.A.: A logic of believing, knowing and inferring. Synthese 26, 356–382 (1974)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Moore, R.C., Hendrix, G.: Computational models of beliefs and the semantics of belief sentences. Technical Note 187, SRI International, Menlo Park, CA(1979)Google Scholar
  7. 7.
    Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment. Journal of the ACM 37, 549–587 (1990)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Konolige, K.: A Deduction Model of Belief and its Logics. PhD thesis, Stanford University (1984)Google Scholar
  9. 9.
    Konolige, K.: Belief and incompleteness. In: Hobbs, J.R., Moore, R.C. (eds.) Formal Theories of the Commonsense World, pp. 359–403. Ablex Publishing Corporation, New Jersey (1985)Google Scholar
  10. 10.
    Konolige, K.: A Deduction Model of Belief. Morgan Kaufmann Publishers, Los Altos (1986)MATHGoogle Scholar
  11. 11.
    Fagin, R., Halpern, J.Y.: Belief, awareness and limited reasoning. Artificial Intelligence 34, 39–76 (1988); A preliminary version appeared in [16]MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Drapkin, J., Perlis, D.: Step-logics: An alternative approach to limited reasoning. In: Proceedings of the European Conference on Artificial Intelligence, Brighton, England, pp. 160–163 (1986)Google Scholar
  13. 13.
    Elgot-Drapkin, J., Kraus, S., Miller, M., Nirkhe, M., Perlis, D.: Active logics: A unified formal approach to episodic reasoning. Techn. Rep. CS-TR-4072 (1999)Google Scholar
  14. 14.
    Ågotnes, T., Walicki, M.: Syntactic knowledge: A logic of reasoning, communication and cooperation. In: Ghidini, C., Giorgini, P., van der Hoek, W. (eds.) Proceedings of the Second European Workshop on Multi-Agent Systems (EUMAS), Barcelona, Spain (2004)Google Scholar
  15. 15.
    Alechina, N., Logan, B., Whitsey, M.: A complete and decidable logic for resourcebounded agents. In: Proc. of the Third Intern. Joint Conf. on Autonomous Agents and Multi-Agent Syst. (AAMAS 2004), pp. 606–613. ACM Press, New York (2004)Google Scholar
  16. 16.
    Fagin, R., Halpern, J.Y.: Belief, awareness and limited reasoning. In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles, CA, pp. 491–501 (1985)Google Scholar
  17. 17.
    Hadley, R.F.: Fagin and halpern on logical omniscience: A critique with an alternative. In: Proc. Sixth Canadian Conference on Artificial Intelligence, pp. 49–56. University of Quebec Press, Montreal (1986)Google Scholar
  18. 18.
    Konolige, K.: What awareness isn’t: A sentential view of implicit and explicit belief. In: Halpern, J.Y. (ed.) Theoretical Aspects of Reasoning About Knowledge: Proceedings of the First Conference, Los Altos, California, pp. 241–250. Morgan Kaufmann Publishers, Inc., San Francisco (1986)CrossRefGoogle Scholar
  19. 19.
    Huang, Z., Kwast, K.: Awareness, negation and logical omniscience. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 282–300. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  20. 20.
    Thijsse, E.: On total awareness logics. In: de Rijke, M. (ed.) Diamonds and Defaults, pp. 309–347. Kluwer Academic Publishers, Dordrecht (1993)CrossRefGoogle Scholar
  21. 21.
    Halpern, J.: Alternative semantics for unawareness. Games and Economic Behaviour 37, 321–339 (2001)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Montague, R.: Pragmatics. In: Klibansky, R. (ed.) Contemporary Philosophy: A Survey, pp. 102–122. I. La Nuova Italia Editrice, Florence (1968); Reprinted in [40, pp. 95 – 118]Google Scholar
  23. 23.
    Montague, R.: Universal grammar. Theoria 36, 373–398 (1970); Reprinted in [40, pp. 222 – 246]MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Scott, D.S.: Advice on modal logic. In: Lambert, K. (ed.) Philosophical Problems in Logic, pp. 143–173. D. Reidel Publishing Co., Dordrecht (1970)CrossRefGoogle Scholar
  25. 25.
    Moreno, A.: Avoiding logical omniscience and perfect reasoning: a survey. AI Communications 11, 101–122 (1998)MathSciNetGoogle Scholar
  26. 26.
    Sim, K.M.: Epistemic logic and logical omniscience: A survey. International Journal of Intelligent Systems 12, 57–81 (1997)CrossRefMATHGoogle Scholar
  27. 27.
    Wansing, H.: A general possible worlds framework for reasoning about knowledge and belief. Studia Logica 49, 523–539 (1990)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rantala, V.: Impossible worlds semantics and logical omniscience. Acta Philosophica Fennica 35, 106–115 (1982)MathSciNetMATHGoogle Scholar
  29. 29.
    Rantala, V.: Quantified modal logic: non-normal worlds and propositional attitudes. Studia Logica 41, 41–65 (1982)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Ågotnes, T., Walicki, M.: A logic for reasoning about agents with finite explicit knowledge. In: Tessem, B., Ala-Siuru, P., Doherty, P., Mayoh, B. (eds.) Proc. of the 8th Scandinavian Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications, pp. 163–174. IOS Press, Amsterdam (2003)Google Scholar
  31. 31.
    Ågotnes, T., Walicki, M.: Complete axiomatizations of finite syntactic epistemic states. In: Baldoni, M., Endriss, U., Omicini, A., Torroni, P. (eds.) DALT 2005. LNCS (LNAI), vol. 3904, pp. 33–50. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  32. 32.
    de Lavalette, G.R., Kooi, B., Verbrugge, R.: Strong completeness for propositional dynamic logic. In: Balbiani, P., Suzuki, N.Y., Wolter, F. (eds.) Preliminary Proceedings of AiML 2002, Institut de Recherche en Informatique de Toulouse IRIT, pp. 377–393 (2002)Google Scholar
  33. 33.
    Levesque, H.J.: All I know: a study in autoepistemic logic. Artificial Intelligence 42, 263–309 (1990)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Konolige, K.: Circumscriptive ignorance. In: Waltz, D. (ed.) Proceedings of the National Conference on Artificial Intelligence, Pittsburgh, PA, pp. 202–204. AAAI Press, Menlo Park (1982)Google Scholar
  35. 35.
    Moore, R.C.: Semantical considerations on nonmonotonic logic. In: Bundy, A. (ed.) Proceedings of the 8th International Joint Conference on Artificial Intelligence, Karlsruhe, FRG, pp. 272–279. William Kaufmann, San Francisco (1983)Google Scholar
  36. 36.
    Halpern, J.Y., Moses, Y.: Towards a theory of knowledge and ignorance. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems, pp. 459–476. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  37. 37.
    Halpern, J.Y.: A theory of knowledge and ignorance for many agents. Journal of Logic and Computation 7, 79–108 (1997)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Halpern, J.Y., Lakemeyer, G.: Levesque’s axiomatization of only knowing is incomplete. Artificial Intelligence 74, 381–387 (1995)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Halpern, J.Y., Lakemeyer, G.: Multi-agent only knowing. In: Shoham, Y. (ed.) Theoretical Aspects of Rationality and Knowledge: Proceedings of the Sixth Conference (TARK 1996), pp. 251–265. Morgan Kaufmann, San Francisco (1996)Google Scholar
  40. 40.
    Montague, R.: Formal Philosophy. Yale University Press, New Haven (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Ågotnes
    • 1
  • Michal Walicki
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations