Reasoning About Epistemic States of Agents by Modal Logic Programming

  • Linh Anh Nguyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3900)


Modal logic programming is one of appropriate approaches to deal with reasoning about epistemic states of agents. We specify here the least model semantics, the fixpoint semantics, and an SLD-resolution calculus for modal logic programs in the multimodal logic KD4I g 5 a , which is intended for reasoning about belief and common belief of agents. We prove that the presented SLD-resolution calculus is sound and complete. We also present a formalization of the wise men puzzle using a modal logic program in KD4I g 5 a . This shows that it is worth to study modal logic programming for multi-agent systems.


Modal Operator Modal Logic Logic Programming Epistemic State Model Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldewereld, H., van der Hoek, W., Meyer, J.-J.C.: Rational teams: Logical aspects of multi-agent systems. Fundamenta Informaticae 63, 159–183 (2004)MathSciNetMATHGoogle Scholar
  2. 2.
    Attardi, G., Simi, M.: Proofs in context. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) KR 1994: Principles of Knowledge Representation and Reasoning, pp. 16–26. Morgan Kaufmann, San Francisco (1994)Google Scholar
  3. 3.
    Balbiani, P., Fariñas del Cerro, L., Herzig, A.: Declarative semantics for modal logic programs. In: Proceedings of the 1988 International Conference on Fifth Generation Computer Systems, pp. 507–514. ICOT (1988)Google Scholar
  4. 4.
    Baldoni, M.: Normal multimodal logics with interaction axioms. In: Basin, D., D’Agostino, M., Gabbay, D.M., Viganò, L. (eds.) Labelled Deduction, pp. 33–57. Kluwer Academic Publishers, Dordrecht (2000)CrossRefGoogle Scholar
  5. 5.
    Baldoni, M., Giordano, L., Martelli, A.: A framework for a modal logic programming. In: Joint International Conference and Symposium on Logic Programming, pp. 52–66. MIT Press, Cambridge (1996)Google Scholar
  6. 6.
    Brogi, A., Lamma, E., Mello, P.: Inheritance and hypothetical reasoning in logic programming. In: Proceedings of ECAI 1990, Stockholm, pp. 105–110 (1990)Google Scholar
  7. 7.
    Cimatti, A., Serafini, L.: Multi-agent reasoning with belief contexts: The approach and a case study. In: Wooldridge, M.J., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS, vol. 890, pp. 71–85. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    de Carvalho Ferreira, N., Fisher, M., van der Hoek, W.: Practical reasoning for uncertain agents. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 82–94. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Debart, F., Enjalbert, P., Lescot, M.: Multimodal logic programming using equational and order-sorted logic. Theoretical Comp. Science 105, 141–166 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Elgot-Drapkin, J.J.: Step-logic and the three-wise-men problem. In: AAAI, pp. 412–417 (1991)Google Scholar
  11. 11.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  12. 12.
    Fariñas del Cerro, L.: Molog: A system that extends Prolog with modal logic. New Generation Computing 4, 35–50 (1986)CrossRefMATHGoogle Scholar
  13. 13.
    Fisher, M., Owens, R.: An introduction to executable modal and temporal logics. In: Fisher, M., Owens, R. (eds.) Executable Modal and Temporal Logics, IJCAI 1993 workshop, pp. 1–20. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Goré, R., Nguyen, L.A.: A tableau system with automaton-labelled formulae for regular grammar logics. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 138–152. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Goré, R., Nguyen, L.A.: Tableaux for regular grammar logics of agents using automaton-modal formulae. To be submitted to JAR (2006)Google Scholar
  16. 16.
    Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.-J.C.: Agent programming in 3APL. Autonomous Agents and Multi-Agent Systems 2(4), 357–401 (1999)CrossRefGoogle Scholar
  17. 17.
    Kacprzak, M., Lomuscio, A., Penczek, W.: Bounded versus unbounded model checking for interpreted systems (invited talk at FAAMAS 2003). In: Dunin-Keplicz, B., Verbrugge, R. (eds.) Proceedings of FAAMAS 2003, pp. 5–20 (2003)Google Scholar
  18. 18.
    Konolige, K.: Belief and incompleteness. Technical Report 319, SRI Inter (1984)Google Scholar
  19. 19.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)CrossRefMATHGoogle Scholar
  20. 20.
    McCarthy, J.: First order theories of individual concepts and propositions. Machine Intelligence 9, 120–147 (1979)Google Scholar
  21. 21.
    Meyer J.-J.C., de Boer, F.S., van Eijk, R.M., Hindriks, K.V., van der Hoek, W.: On programming KARO agents. Logic Journal of the IGPL 9(2) (2001)Google Scholar
  22. 22.
    Nguyen, L.A.: A fixpoint semantics and an SLD-resolution calculus for modal logic programs. Fundamenta Informaticae 55(1), 63–100 (2003)MathSciNetMATHGoogle Scholar
  23. 23.
    Nguyen, L.A.: Multimodal logic programming and its applications to modal deductive databases. Manuscript (served as a technical report)(2003), available on Internet at,
  24. 24.
    Nguyen, L.A.: The modal logic programming system MProlog. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 266–278. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Nguyen, L.A.: An SLD-resolution calculus for basic serial multimodal logics. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 151–165. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Nguyen, L.A.: The modal logic programming system MProlog: Theory, design, and implementation. Manuscript (2005), available at,
  27. 27.
    Nguyen, L.A.: On modal deductive databases. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS 2005. LNCS, vol. 3631, pp. 43–57. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Nonnengart, A.: How to use modalities and sorts in Prolog. In: MacNish, C., Moniz Pereira, L., Pearce, D.J. (eds.) JELIA 1994. LNCS, vol. 838, pp. 365–378. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  29. 29.
    Orgun, M.A., Ma, W.: An overview of temporal and modal logic programming. In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS (LNAI), vol. 827, pp. 445–479. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  30. 30.
    Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  31. 31.
    Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. KR, 473–484 (1991)Google Scholar
  32. 32.
    Schmidt, R.A., Tishkovsky, D.: Multi-agent logic of dynamic belief and knowledge. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 38–49. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  33. 33.
    van der Hoek, W., Meyer, J.-J.: Modalities for reasoning about knowledge and uncertainties. In: Doherty, P. (ed.) Partiality, Modality, and Nonmonotonicity. CSLI Publications (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Linh Anh Nguyen
    • 1
  1. 1.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations