Advertisement

Implementing Pheromone-Based, Negotiating Forager Agents

  • Simon Coffey
  • Dorian Gaertner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3900)

Abstract

We describe an implementation of distributed, multi-threaded BDI-style [RG95] agents cooperating efficiently in a foraging scenario. Using ant-style pheromone trails as the basis for a pseudo-random walk procedure, they explore the world uniformly and negotiate to allocate collection and delivery tasks. Global information is disseminated via a publish/subscribe mechanism. The system is implemented using the concurrent logic programming language Qu-Prolog.

Keywords

Broadcast Message Delivery Cost Depot Location Agent Step Intention Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CRZ]
    Clark, K.L., Robinson, P.J., Amboldi, S.Z.: Multi-threaded communicating agents in qu-prolog (Tutorial paper). In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS, vol. 3900, pp. 186–205. Springer, Heidelberg (2006)Google Scholar
  2. [DMC96]
    Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics 26(1), 29–41 (1996)Google Scholar
  3. [GC05]
    Gaertner, D., Clark, K.: On Optimal Parameters for Ant Colony Optimization Algorithms. In: Arabnia, H., Joshua, R. (eds.) Proceedings of the International Conference on Artificial Intelligence 2005. CSREA, vol. 1, pp. 83–89 (2005)Google Scholar
  4. [Nil94]
    Nilsson, N.J.: Teleo-reactive programs for agent control. Journal of Artificial Intelligence Research 1, 139–158 (1994)Google Scholar
  5. [RG95]
    Rao, A., Georgeff, M.: BDI agents: From theory to practice. In: Proceedings of the 1st International Conference on Multi-Agents Systems, pp. 312–319 (1995)Google Scholar
  6. [RW03]
    Robinson, P.J., Walters, M.J.: Qu-Prolog 6.3 Reference Manual. University of Queensland (2003)Google Scholar
  7. [SAB+00]
    Segall, B., Arnold, D., Boot, J., Henderson, M., Phelps, T.: Content based routing with Elvin4. In: Proceedings of AUUG2K (June 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Simon Coffey
    • 1
  • Dorian Gaertner
    • 1
  1. 1.Imperial College LondonUnited Kingdom

Personalised recommendations