A Low Computation Cost Algorithm to Solve Cellular Systems with Retrials Accurately

  • Ma. José Doménech-Benlloch
  • José Manuel Giménez-Guzmán
  • Jorge Martínez-Bauset
  • Vicente Casares-Giner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3883)


This paper proposes an approximate methodology for solving Markov models that compete for limited resources and retry when access fails, like those arising in mobile cellular networks. We limit the number of levels that define the system by aggregating all levels beyond a given one in order to manage curse of dimensionality issue. The developed methodology allows to balance accuracy and computational cost. We determine the relative error of different typical performance parameters when using the approximate model as well as the computational savings. Results show that high accuracy and cost savings can be obtained by deploying the proposed methodology.


Approximate Model Retrial Queueing Exact Model Customer Retrial Service Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, K.: Direct distance dialing: Call completion and customer retrial behavior. Bell System Technical Journal 59, 295–311 (1980)CrossRefGoogle Scholar
  2. 2.
    Tran-Gia, P., Mandjes, M.: Modeling of customer retrial phenomenon in cellular mobile networks. IEEE Journal on Selected Areas in Communications 15, 1406–1414 (1997)CrossRefGoogle Scholar
  3. 3.
    Goodman, D.J., Saleh, A.A.M.: The near/far effect in local ALOHA radio communications. IEEE Transactions on Vehicular Technology 36(1), 19–27 (1987)CrossRefGoogle Scholar
  4. 4.
    Artalejo, J., Falin, G.: Standard and retrial queueing system: A comparative analysis. Revista Matemática Complutense 15(1), 101–129 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Marsan, M.A., De Carolis, G., Leonardi, E., Lo Cigno, R., Meo, M.: Efficient Estimation of Call Blocking Probabilities in Cellular Mobile Telephony Networks with Customer Retrials. IEEE Journal on Selected Areas in Communications 19(2), 332–346 (2001)CrossRefGoogle Scholar
  6. 6.
    Onur, E., Deliç, H., Ersoy, C., Çaglayan, M.U.: Measurement-based replanning of cell capacities in GSM networks. Computer Networks 39, 749–767 (2002)CrossRefGoogle Scholar
  7. 7.
    Neuts, M.F.: Matrix Geometric Solutions in Stochastic Models: An Algorithmic Approach. The John Hopkins University Press, Baltimore (1981)MATHGoogle Scholar
  8. 8.
    Gaver, D.P., Jacobs, P.A., Latouche, G.: Finite birth-and-death models in randomly changing environments. Advanced Applied Probability 16, 715–731 (1984)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Servi, L.D.: Algorithmic Solutions to Two-Dimensional Birth-Death Processes with Application to Capacity Planning. Telecommunication Systems 21(2-4), 205–212 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ma. José Doménech-Benlloch
    • 1
  • José Manuel Giménez-Guzmán
    • 1
  • Jorge Martínez-Bauset
    • 1
  • Vicente Casares-Giner
    • 1
  1. 1.Department of CommunicationsUniversitat Politècnica de València, UPV, ETSITValènciaSpain

Personalised recommendations