Enumeration Degrees of the Bounded Total Sets

  • Boris Solon
  • Sergey Rozhkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)


Let f:ωω be a total function and f̂= {〈x,y 〉: x ∈ ω& y ≤ f(x)}. A set A ⊆ ω is called bounded total if A = f̂ for some total function f. In this paper we study enumeration degrees of the bounded total sets.


Initial Segment Partial Function Total Function Minimal Pair Direct Enumeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arslanov, M.M., Cooper, S.B., Kalimullin, I.S.: The properties of the splitting of total e-degrees. Algebra i logica 43(1), 1–25 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Case, J.: Enumeration reducibility and partial degrees. Annals Math. Logic 2(4), 419–439 (1971)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fridberg, R., Rogers, H.: Reducibility and completness for sets of integers. Z. math. Logic Grundl. Math. 5, 117–125 (1959)CrossRefGoogle Scholar
  4. 4.
    Gutteridge, L.: Some results on e-reducibility, Ph.D.Diss., Burnaby (1971)Google Scholar
  5. 5.
    McEvoy, K.: Jumps of quasi-minimal enumeration degrees. J. Symb. Logic 50, 839–848 (1985)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Medvedev, Y.T.: Degrees of difficulty of the mass problem. Dokl. Acad. Nauk SSSR 104(4), 501–504 (1955) (Russian) Google Scholar
  7. 7.
    Pankratov, A.: The research of some properties of co-total e-degrees. In: Proceedings of Intern. conf. Logic and applications. Novosibirsk, p. 79 (2000) (Russian)Google Scholar
  8. 8.
    Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)MATHGoogle Scholar
  9. 9.
    Sasso, L.P.: A survey of partial degrees. J. Symb. Logic 40, 130–140 (1975)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Selman, L.: Arithmetical reducibilities. I, Z. Math. Logic Grundlag Math. 17, 335–550 (1971)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Soar Robert, I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Boris Solon
    • 1
  • Sergey Rozhkov
    • 1
  1. 1.Dpt of MathematicsISUCTIvanovoRussia

Personalised recommendations