Advertisement

Abstract

Rogers semilattices of computable numberings for the families in the hierarchy of Ershov are compared with those for the families in the arithmetical hierarchy.

Keywords

Classical Case Computable Function Decomposition Theorem Computability Theory Countable Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Handbook on Recursive Mathematics. Recursive model theory, vol. 1. Elsevier, Amsterdam (1998)Google Scholar
  2. 2.
    Handbook on Recursive Mathematics. Recursive Algebra, Analysis and Combinatorics, vol. 2. Elsevier, Amsterdam (1998)Google Scholar
  3. 3.
    Ershov, Y.L., Goncharov, S.S.: Constructive models. Plenum Press Corp., New- York (1999)MATHGoogle Scholar
  4. 4.
    Goncharov, S.S., Sorbi, A.: Generalized computable numberings and non-trivial Rogers semilattices. Algebra and Logic 36(4), 359–369 (1997)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ershov.Y.L.: Theory of Numberings. Nauka, Moscow (1977) (Russian)Google Scholar
  6. 6.
    Badaev, S.A., Goncharov, S.S.: Theory of numberings: open problems. In: Cholak, P., Lempp, S., Lerman, M., Shore, R. (eds.) Computability Theory and its Applications, vol. 257, pp. 23–38. Contemporary Mathematics, American Mathematical Society, Providence (2000)Google Scholar
  7. 7.
    Badaev, S., Goncharov, S., Podzorov, S., Sorbi, A.: Algebraic properties of Rogers semilattices of arithmetical numberings. In: Cooper, S.B., Goncharov, S. (eds.) Computability and Models, pp. 45–77. Kluwer Academic/Plenum Publishers, New York (2003)Google Scholar
  8. 8.
    Khutoretsky, A.B.: On the cardinality of the upper semilattice of computable enumerations. Algebra and Logic 10(5), 348–352 (1971)CrossRefGoogle Scholar
  9. 9.
    Selivanov, V.L.: Two theorems on computable enumerations. Algebra and Logic 15(4), 297–306 (1976)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Serikzhan Badaev
    • 1
  1. 1.Kazakh National UniversityAlmatyKazakhstan

Personalised recommendations