Improved SAT Based Bounded Model Checking

  • Conghua Zhou
  • Decheng Ding
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)


The usefulness of Bounded Model Checking(BMC) based on propositional satisfiability methods has recently proven its efficacy for bug hunting. The basic idea is to search for a counterexample in executions whose length is bounded by some integer k. In fact, for some properties some bounded paths are equivalent. In the original Bounded Model Checking equivalent bounded paths may be searched repeatedly. Therefore some searches are redundant. In this paper with respect to some properties we exploit new encoding for Bounded Model Checking such that we can avoid searching for redundant bounded paths.


Model Check Linear Temporal Logic Atomic Proposition Propositional Formula Kripke Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press, Cambridge (2000)Google Scholar
  2. Ben-Ari, M., Manna, Z., Pnueli, A.: The temporal logic of branching time. Acta Information 20, 207–226 (1983)MATHCrossRefMathSciNetGoogle Scholar
  3. Pnueli, A.: A temporal logic of concurrent programs. Theoretical Computer Science 13, 45–60Google Scholar
  4. McMillan, K.L.: Symbolic model checking. Kluwer Academic Publishers, Dordrecht (1993)MATHGoogle Scholar
  5. Burch, J.R., Clarke, E.M., McMillan, K.L.: Symbolic model checking: 1020 states and beyond. Information and Computation 98, 142–170 (1992)MATHCrossRefMathSciNetGoogle Scholar
  6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)MATHCrossRefGoogle Scholar
  7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. Jin, H., Somenzi, F.: An incremental algorithm to check satisfiability for bounded model checking. Electronic Notes in Theoretical Computer Science 119, 51–65 (2005)CrossRefGoogle Scholar
  9. Jin, H., Awedh, M., Somenzi, F.: CirCUs: A satisfiability solver geared towards bounded model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 519–522. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple is better: Efficient bounded model checking for past LTL. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 380–395. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. Latvala, T., Biere, A., Heljanko, K., Junttila, T.: Simple bounded LTL model checking. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 186–200. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. Frisch, A., Sheridan, D., Walsh, T.: A fixpoint based encoding for bounded model checking. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. Shtrichman, O.: Pruning techniques for the SAT-based Bounded Model Checking Problem. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, p. 58. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. Shtrichman, O.: Tuning SAT checkers for Bounded Model-Checking. In: CAV. LNCS, vol. 1855 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Conghua Zhou
    • 1
  • Decheng Ding
    • 1
  1. 1.Department of MathematicsNanjing UniversityChina

Personalised recommendations