The Extended Probabilistic Powerdomain Monad over Stably Compact Spaces

  • Ben Cohen
  • Martin Escardo
  • Klaus Keimel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)


For the semantics of probabilistic features in programming mainly two approaches are used for building models. One is the Giry monad of Borel probability measures over metric spaces, and the other is Jones’ probabilistic powerdomain monad [6] over dcpos (directed complete partial orders). This paper places itself in the second domain theoretical tradition. The probabilistic powerdomain monad is well understood over continuous domains. In this case the algebras of the monad can be described by an equational theory [6, 9,5]. It is the aim of this work to obtain similar results for the (extended) probabilistic powerdomain monad over stably compact spaces. We mainly want to determine the algebras of this powerdomain monad and the algebra homomorphisms.


Compact Space Scalar Multiplication Topological Vector Space Algebra Homomorphism Continuous Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Clarendon Press, Oxford (1994)Google Scholar
  2. 2.
    Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. In: Ergebnisse der Mathematik und iherer Grenzgebiete, vol. 57. Springer, Heidelberg (1971)Google Scholar
  3. 3.
    Alvarez Manilla, M., Jung, A., Keimel, K.: The probabilistic powerspace for stably compact spaces. Theoretical Computer Science 328, 221–244 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fedorchuk, V.V.: Probability measures in topology. Russian Mathematical Surveys 46(1), 41–80 (1991)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous Lattices and Domains. In: Encyclopedia of Mathematics and its Applications, vol. 93, Cambridge University Press, Cambridge (2003)Google Scholar
  6. 6.
    Jones, C.: Probabilistic Non-determinism. PhD thesis, Department of Computer Science, University of Edinburgh, Edinburgh, p. 201 (1990)Google Scholar
  7. 7.
    Keimel, K.: Topological cones: Foundations for a domains theoretical sematics combining probability and nondeterminism. Electronic Notes in Theoretical Computer Science (to appear)Google Scholar
  8. 8.
    Keimel, K., Roth, W.: Ordered Cones and Approximation, Lecture Notes in Mathematics. vol. 1517 vi+134 Springer Verlag, (1992)Google Scholar
  9. 9.
    Kirch, O.: Bereiche und Bewertungen. Master’s thesis, Technische Hochschule Darmstadt, 77pp. (June 1993),
  10. 10.
    qNachbin, L.: Topology and Order. Von Nostrand, Princeton, N.J., 1965. Reprinted by Robert E. Kreiger Publishing Co., Huntington (1967)Google Scholar
  11. 11.
    Plotkin, G.D.: A domain-theoretic Banach-Alaoglu theorem. Mathematical Structures in Computer Science (to appear)Google Scholar
  12. 12.
    Roth, W.: Hahn-Banach type theorems for locally convex cones. Journal of the Australian Mathematical Society 68(1), 104–125 (2000)MATHCrossRefGoogle Scholar
  13. 13.
    Schröder, M., Simpson, A.: Probabilistic observations and valuations (Extended Abstract). In: Proceedings of MFPS 21 (2005); to appear in Electronic Notes in Theoretical Computer Science (2006)Google Scholar
  14. 14.
    Tix, R.: Stetige Bewertungen auf topologischen Räumen. Master’s thesis, Technische Hochschule Darmstadt, 51pp. (June 1995),
  15. 15.
    Tix, R., Keimel, K., Plotkin, G.D.: Semantic Domains Combining Probabilty and Nondeterminism. Electronic Notes in Theoretical Computer Science 129, 1–104 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ben Cohen
    • 1
  • Martin Escardo
    • 2
  • Klaus Keimel
    • 1
  1. 1.Fachbereich MathematikTechnische UniversitätDarmstadtGermany
  2. 2.School of Computer ScienceUniversity of BirminghamBirminghamUK

Personalised recommendations