Advertisement

Secure Computations in a Minimal Model Using Multiple-Valued ESOP Expressions

  • Takaaki Mizuki
  • Taro Otagiri
  • Hideaki Sone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)

Abstract

This paper deals with secure computations in a minimal model, and gives a protocol which securely computes every function by means of the techniques of exclusive-or sum-of-products (ESOP) expressions. The communication complexity of our protocol is proportional to the size of an obtained multiple-valued-input ESOP expression. Since the historical research on minimizing ESOP expressions is now still active, our protocol will turn to an efficient one as this research progresses. Thus, this paper gives an application of ESOP expressions to designing cryptographic protocols, and we hope that it would motivate further research on minimizing ESOP expressions.

Keywords

Minimal Model Product Term Secure Computation Historical Research Cryptographic Protocol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Proc. CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)Google Scholar
  2. 2.
    Cachin, C., Camenisch, J., Kilian, J., Müller, J.: One-round secure computation and secure autonomous mobile agents. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 512–523. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation. In: Proceedings of the 26th ACM Symposium on Theory of Computing (STOC 1994), pp. 554–563 (1994)Google Scholar
  4. 4.
    Fleisher, H., Tavel, M., Yeager, J.: A computer algorithm for minimizing Reed- Muller canonical forms. IEEE Transactions on Computers 36(2), 247–250 (1987)MATHCrossRefGoogle Scholar
  5. 5.
    Gaidukov, A.: Algorithm to derive minimum esop for 6-variable function. In: Proceedings of the fifth International Workshop on Boolean Problems (2002)Google Scholar
  6. 6.
    Gál, A., Rosén, A.: A theorem on sensitivity and applications in private computation. SIAM Journal on Computing 31(5), 1424–1437 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gál, A., Rosén, A.: Lower bounds on the amount of randomness in private computation. In: Proceedings of the 35th ACM Symposium on Theory of Computing (STOC 2003), pp. 659–666 (2003)Google Scholar
  8. 8.
    Goldreich, O.: Foundations of Cryptography II: Basic Applications. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  9. 9.
    Hirayama, T., Nishitani, Y., Sato, T.: A faster algorithm of minimizing ANDEXOR expressions. IEICE Trans. Fundamentals E85-A(12), 2708–2714 (2002)Google Scholar
  10. 10.
    Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: Proceedings of the fifth Israel Symposium on the Theory of Computing Systems (ISTCS 1997), pp. 174–183 (1997)Google Scholar
  11. 11.
    Kushilevitz, E., Ostrovsky, R., Rosén, A.: Characterizing linear size circuits in terms of privacy. Journal of Computer and System Sciences 58(1), 129–136 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Sasao, T.: EXMIN2: a simplification algorithm for exclusive-or sum-of-products expressions for multiple-valued-input two-valued-output functions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 12(5), 621–632 (1993)CrossRefGoogle Scholar
  13. 13.
    Sasao, T.: Switching Theory for Logic Synthesis. Kluwer Academic Publishers, Boston (1999)MATHGoogle Scholar
  14. 14.
    Sasao, T., Besslich, P.: On the complexity of mod-2 sum PLA’s. IEEE Transactions on Computers 39(2), 262–266 (1990)CrossRefGoogle Scholar
  15. 15.
    Song, N., Perkowski, M.A.: Minimization of exclusive sum-of-products expressions for multiple-valued input, incompletely specified functions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15(4), 385–395 (1996)CrossRefGoogle Scholar
  16. 16.
    Stergiou, S., Papakonstantinou, G.: Exact minimization of ESOP expressions with less than eight product terms. Journal of Circuits, Systems and Computers 13(1), 1–15 (2004)CrossRefGoogle Scholar
  17. 17.
    Stergiou, S., Voudouris, D., Papakonstantinou, G.: Multiple-value exclusive-or sum-of-products minimization algorithms. IEICE Trans. Fundamentals E87-A(5), 1226–1234 (2004)Google Scholar
  18. 18.
    Yao, A.: Protocols for secure computations. In: Proceedings of the 23th IEEE Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164 (1982)Google Scholar
  19. 19.
    Ye, Y., Roy, K.: An XOR-based decomposition diagram and its application in synthesis of AND/XOR networks. IEICE Trans. Fundamentals E80-A(10), 1742–1748 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Takaaki Mizuki
    • 1
  • Taro Otagiri
    • 2
  • Hideaki Sone
    • 1
  1. 1.Information Synergy CenterTohoku UniversitySendaiJapan
  2. 2.Sone Lab., Graduate School of Information SciencesTohoku UniversitySendaiJapan

Personalised recommendations