Mitosis in Computational Complexity

  • Christian Glaßer
  • A. Pavan
  • Alan L. Selman
  • Liyu Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)


This expository paper describes some of the results of two recent research papers [GOP+05, GPSZ05]. The first of these papers proves that every NP-complete set is many-one autoreducible. The second paper proves that every many-one autoreducible set is many-one mitotic. It follows immediately that every NP-complete set is many-one mitotic. Hence, we have the compelling result that every NP-complete set A splits into two NP-complete sets A 1 and A 2.


Turing Machine Label Strategy Hole Argument Deterministic Turing Machine Expository Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AS84]
    Ambos-Spies, K.: P-mitotic sets. In: Börger, E., Hasenjäger, G., Roding, D. (eds.) Logic and Machines. LNCS, vol. 177, pp. 1–23. Springer, Heidelberg (1984)Google Scholar
  2. [BF92]
    Beigel, R., Feigenbaum, J.: On being incoherent without being very hard. Computational Complexity 2, 1–17 (1992)MATHCrossRefMathSciNetGoogle Scholar
  3. [BFvMT00]
    Buhrman, H., Fortnow, L., van Melkebeek, D., Torenvliet, L.: Using autoreducibility to separate complexity classes. SIAM Journal on Computing 29(5), 1497–1520 (2000)MATHCrossRefMathSciNetGoogle Scholar
  4. [BHT98]
    Buhrman, H., Hoene, A., Torenvliet, L.: Splittings, robustness, and structure of complete sets. SIAM Journal on Computing 27, 637–653 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. [BT94]
    Buhrman, H., Torenvliet, L.: On the structure of complete sets. In: Proceedings 9th Structure in Complexity Theory, pp. 118–133 (1994)Google Scholar
  6. [GOP+05]
    Glasser, C., Ogihara, M., Pavan, A., Selman, A., Zhang, L.: Autoreducibility, mitoticity, and immunity. In: Proceedings of the 30th International Symposium onMathematical Foundations of Computer Science. LNCS, vol. 3618, Springer, Heidelberg (2005)Google Scholar
  7. [GPSZ05]
    Glasser, C., Pavan, A., Selman, A., Zhang, L.: Redundancy in complete sets. Technical Report 05-068, Electronic Colloquium on Computational Complexity (2005)Google Scholar
  8. [Lad73]
    Ladner, R.: Mitotic recursively enumerable sets. Journal of Symbolic Logic 38(2), 199–211 (1973)MATHCrossRefMathSciNetGoogle Scholar
  9. [OW91]
    Ogiwara, M., Watanabe, O.: On polynomial-time bounded truth-table reducibility of NP sets to sparse sets. SIAM Journal of Computing 20(3), 471–483 (1991)MATHCrossRefMathSciNetGoogle Scholar
  10. [Tra70]
    Trakhtenbrot, B.: On autoreducibility. Dokl. Akad. Nauk SSSR 192, (1970); Translation in Soviet Math. Dokl. 11, 814– 817 (1970)Google Scholar
  11. [Yao90]
    Yao, A.: Coherent functions and program checkers. In: Proceedings of the 22nd Annual Symposium on Theory of Computing, pp. 89–94 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Glaßer
    • 1
  • A. Pavan
    • 2
  • Alan L. Selman
    • 3
  • Liyu Zhang
    • 3
  1. 1.Universität Würzburg 
  2. 2.Iowa State University 
  3. 3.University at Buffalo 

Personalised recommendations