Advertisement

On Some Complexity Issues of NC Analytic Functions

  • Fuxiang Yu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)

Abstract

This paper studies the complexity of derivatives and integration of NC real functions (not necessarily analytic) and NC analytic functions. We show that for NC real functions, derivatives and integration are infeasible, but analyticity helps to reduce the complexity. For example, the integration of a log-space computable real function f is as hard as #P, but if f is an analytic function, then the integration is log-space computable. As an application, we study the problem of finding all zeros of an NC analytic function inside a Jordan curve and show that, under a uniformity condition on the function values of the Jordan curve, the zeros are all NC computable.

Keywords

Meromorphic Function Turing Machine Complexity Class Jordan Curve Modulus Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theor. Comput. Sci. 107(1), 3–30 (1993)MATHCrossRefGoogle Scholar
  2. 2.
    Bläser, M.: Uniform computational complexity of the derivatives of C ∞ -functions. Theor. Comput. Sci. 284(2), 199–206 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Bovet, D.P., Crescenzi, P.: Introduction to the theory of complexity. Prentice Hall International (UK) Ltd., Hertfordshire (1994)Google Scholar
  4. 4.
    Burden, R.L., Faires, J.D.: Numerical Analysis, 7th edn. Brooks/Cole (2001)Google Scholar
  5. 5.
    Carpentier, M.P., Santos, A.F.D.: Solution of equations involving analytic functions. J. Comput. Phys. 45, 210–220 (1982)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chiu, A., Davida, G.I., Litow, B.E.: Division in logspace-uniform NC1. ITA 35(3), 259–275 (2001)MATHMathSciNetGoogle Scholar
  7. 7.
    Chou, A.W., Ko, K.-I.: Computational Complexity of Two-Dimensional Regions. SIAM. J. COMPUT. 24, 923–947 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Delves, L., Lyness, J.: A numerical method for locating the zeros of an analytic function. Math. Comput. (1967)Google Scholar
  9. 9.
    Du, D.-Z., Ko, K.-I.: Theory of Computational Complexity. John Wiley & Sons, New York (2000)MATHGoogle Scholar
  10. 10.
    Henrici, P.: Applied and Computational Complex Analysis, vol. 1-3. JohnWiley & Sons, New York (1974)MATHGoogle Scholar
  11. 11.
    Hoover, H.J.: Feasible real functions and arithmetic circuits. SIAM J. Comput. 19(1), 182–204 (1990)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoover, H.J.: Real functions, contraction mappings, and P-completeness. Inf. Comput. 93(2), 333–349 (1991)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ko, K.-I.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)MATHGoogle Scholar
  14. 14.
    Ko, K.-I., Yu, F.: On the complexity of computing the logarithm and square root functions on a complex domain. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 349–358. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Kravanja, P., Barel, M.V.: Computing the zeros of Analytic Functions. Springer, Heidelberg (2000)MATHCrossRefGoogle Scholar
  16. 16.
    Meylan, M.H., Gross, L.: A parallel algorithm to find the zeros of a complex analytic function. ANZIAM. J. 44(E), 236–254 (2003)Google Scholar
  17. 17.
    Müller, N.T.: Uniform computational complexity of taylor series. In: ICALP, pp. 435–444 (1987)Google Scholar
  18. 18.
    Neff, C.A.: Specified precision polynomial root isolation is in NC. J. Comput. Syst. Sci. 48(3), 429–463 (1994)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Petkovic, M.S.: On initial conditions for the convergence of simultaneous root finding methods. Computing 57(2), 163–178 (1996)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Petkovic, M.S., Carstensen, C., Trajkovc, M.: Weierstrass formula and zerofinding methods (1995)Google Scholar
  21. 21.
    Yakoubsohn, J.C.: Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions. J. Complex 21(5), 652–690 (2005)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fuxiang Yu
    • 1
  1. 1.Department of Computer ScienceState University of New York at Stony BrookStony BrookUSA

Personalised recommendations