A New Approximation Algorithm for the k-Facility Location Problem

  • Peng Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)


The k-facility location problem is a common generalization of the facility location and the k-median problems. For the metric uncapacitated k-facility location problem, we propose a polynomial-time 2 + \(\sqrt{3} + \epsilon\)-approximation algorithm using the local search approach, which significantly improves the previously known approximation ratio 4, given by Jain et al. using the greedy method (J. ACM 50 (2003) 795–824).


Local Search Approximation Algorithm Facility Location Approximation Ratio Service Cost 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for k-median and facility location problem. SIAM J. Comput. 33, 544–562 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. Beasley, J.: Operations research library (2005), Available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/uncapinfo.html
  3. Charikar, M., Guha, S.: Improved combinatorial algorithms for the facility location and k-median problems. In: Proceedings of the 40th IEEE Annual Symposium on Foundations of Computer Science, pp. 378–388 (1999)Google Scholar
  4. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. J. Algorithms 31, 228–248 (1999)MATHCrossRefMathSciNetGoogle Scholar
  5. Hajiaghayi, M., Mahdian, M., Mirrokni, V.: The facility location problem with general cost functions. Networks 42, 42–47 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50, 795–824 (2003)CrossRefMathSciNetGoogle Scholar
  7. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location. In: Proceedings of the 34th ACM Symposium on Theory of Computing, pp. 731–740 (2002)Google Scholar
  8. Jain, K., Vazirani, V.: Approximation algorithms for metric facility location and k median problems using the primal-dual schema and lagrangian relaxation. J. ACM 48, 274–296 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. Korupolu, M., Plaxton, C., Rajaraman, R.: Analysis of a local search heuristic for facility location problems. J. Algorithms 37, 146–188 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. Love, R., Morris, J., Wesolowsky, G.: Facilities location: models and methods. North Holland, New York (1988)MATHGoogle Scholar
  11. Mirchandani, P., Francis, R. (eds.): Discrete location theory. John Wiley and Sons, New York (1990)MATHGoogle Scholar
  12. Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: A greedy facility location algorithms analyzed using dual fitting. In: Goemans, M.X., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) RANDOM 2001 and APPROX 2001. LNCS, vol. 2129, pp. 127–137. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility location problems. In: Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization, pp. 229–242 (2002)Google Scholar
  14. Shmoys, D.: Approximation algorithms for facility location problems. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 27–33. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Peng Zhang
    • 1
    • 2
  1. 1.Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations