Advertisement

Faster Algorithms for Sorting by Transpositions and Sorting by Block-Interchanges

  • Jianxing Feng
  • Daming Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3959)

Abstract

In this paper, we present a new data structure–permutation tree to improve the running time of sorting permutation by transpositions and sorting permutation by block-interchanges. The 1.5-approximation algorithm for sorting permutation by transpositions has time complexity \(O(n^{\frac{3}{2}} \sqrt{log n})\). By the permutation tree, we can improve this algorithm to achieve time complexity O(nlogn). We can also improve the algorithm for sorting permutation by block interchanges to make its time complexity from O(n 2) down to O(nlogn).

Keywords

Time Complexity Leaf Node 14th Annual Symposium Sorting Problem Black Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palmer, J.D., Herbon, L.A.: Tricircular mitochondrial genomes of brassica and raphanus: reversal of repeat configurations by inversion. Nucleic Acids Research 14(24), 9755–9764 (1986)CrossRefGoogle Scholar
  2. Hoot, S.B., Palmer, J.D.: Structural rearrangements, including parallel inversions, within the chloroplast genome of anemone and related genera. Journal of molcular evolution 38(3), 274–281 (1994)Google Scholar
  3. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete Mathematics 11(2), 224–240 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow (1999)Google Scholar
  5. Walter, M.E.M., Curado, L.R.A.F., Oliveira, A.G.: Working on the problem of sorting by transpositions on genome rearrangements. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 372–383. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., Wastlund, J.: Sorting a bridge hand. Discrete Mathematics 241(1-3), 289–300 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. Hartman, T., Shamir, R.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM 32(3), 652–686 (1985)MATHCrossRefMathSciNetGoogle Scholar
  9. Hartman, T., Shamir, R.: A simpler and faster 1.5-approximation algorithm for sorting by transpositions. Information and Computation (Article in Press) (2005)Google Scholar
  10. Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 204–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theoretical Computer Science 210(2), 327–339 (1999)MATHCrossRefMathSciNetGoogle Scholar
  12. Eriksen, N.: 1+ε-proximation of sorting by reversals and transpositions. Theoretical Computer Science 289(1), 517–529 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. Lin, G.H., Xue, G.L.: Signed genome rearrangements by reversals and transpositions: models and approximations. Theoretical Computer Science 259, 513–531 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. Christie, D.A.: Sorting permutation by block-interchanges. Information Processing Letters 60, 165–169 (1996)CrossRefMathSciNetGoogle Scholar
  15. Lin, Y.C., Lu, C.L., Chang, H.Y., Tang, C.Y.: An efficient algorithm for sorting by block-interchanges and its application to the evolution of vibrio species. J. Comput. Biol. 12(1), 102–112 (2005)CrossRefGoogle Scholar
  16. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: Polynomial algorithm for sorting signed permutations by reversals. Journal of the ACM 46(1), 1–27 (1999)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jianxing Feng
    • 1
  • Daming Zhu
    • 1
  1. 1.School of Computer Science & TechnologyShandong UniversityJinanP.R. China

Personalised recommendations