Lightweight Causal Cluster Consistency

  • Anders Gidenstam
  • Boris Koldehofe
  • Marina Papatriantafilou
  • Philippas Tsigas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3908)


Within an effort for providing a layered architecture of services supporting multi-peer collaborative applications, this paper proposes a new type of consistency management aimed for applications where a large number of processes share a large set of replicated objects. Many such applications, like peer-to-peer collaborative environments for training or entertaining purposes, platforms for distributed monitoring and tuning of networks, rely on a fast propagation of updates on objects, however they also require a notion of consistent state update. To cope with these requirements and also ensure scalability, we propose the cluster consistency model. We also propose a two-layered architecture for providing cluster consistency. This is a general architecture that can be applied on top of the standard Internet communication layers and offers a modular, layered set of services to the applications that need them. Further, we present a fault-tolerant protocol implementing causal cluster consistency with predictable reliability, running on top of decentralised probabilistic protocols supporting group communication. Our experimental study, conducted by implementing and evaluating the two-layered architecture on top of standard Internet transport services, shows that the approach scales well, imposes an even load on the system, and provides high-probability reliability guarantees.


Distribute Hash Table Collaborative Environment Causal Order Arbitrary Process Missing Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, D.C., Thorpe, J.A.: SIMNET:the advent of simulator networking. Proc. of the IEEE 83(8), 1114–1123 (1995)CrossRefGoogle Scholar
  2. 2.
    Greenhalgh, C., Benford, S.: A multicast network architecture for large scale collaborative virtual environments. In: Morganti, M., Fdida, S. (eds.) ECMAST 1997, vol. 1242, pp. 113–128. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Carlsson, C., Hagsand, O.: DIVE - a multi-user virtual reality system. In: Proc. of the IEEE Annual Int. Symp., pp. 394–400 (1993)Google Scholar
  4. 4.
    Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 7(21), 558–565 (1978)Google Scholar
  5. 5.
    Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failure. ACM Transactions on Computer Systems 5, 47–76 (1987)CrossRefGoogle Scholar
  6. 6.
    Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group multicast. ACM Transactions on Computer Systems 9, 272–314 (1991)CrossRefGoogle Scholar
  7. 7.
    Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple way to implement it. Information Processing Letters 39, 343–350 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kshemkalyani, A.D., Singhal, M.: Necessary and sufficient conditions on information for causal message ordering and their optimal implementation. Distributed Computing 11, 91–111 (1998)CrossRefGoogle Scholar
  9. 9.
    Baldoni, R., Prakash, R., Raynal, M., Singhal, M.: Efficient Δ-causal broadcasting. Int. Journal of Computer Systems Science and Engineering 13, 263–269 (1998)MATHGoogle Scholar
  10. 10.
    Rodrigues, L., Baldoni, R., Anceaume, E., Raynal, M.: Deadline-constrained causal order. In: Proc. of the 3rd IEEE Int. Symp. on Object-oriented Real-time distributed Computing (2000)Google Scholar
  11. 11.
    Mattern, F.: Virtual time and global states of distributed systems. In: Proc. Of the Int. Workshop on Parallel and Distributed Algorithms, pp. 215–226 (1989)Google Scholar
  12. 12.
    Birman, K.P., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., Minsky, Y.: Bimodal multicast. ACM Transactions on Computer Systems 17, 41–88 (1999)CrossRefGoogle Scholar
  13. 13.
    Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kermarrec, A.M., Kouznetsov, P.: Lightweight probabilistic broadcast. In: Proc. of the Int. Conf. on Dependable Systems and Networks, pp. 443–452 (2001)Google Scholar
  14. 14.
    Ganesh, A.J., Kermarrec, A.M., Massoulié, L.: Scamp: Peer-to-peer lightweight membership service for large-scale group communication. In: Crowcroft, J., Hofmann, M. (eds.) NGC 2001. LNCS, vol. 2233, pp. 44–55. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Koldehofe, B.: Buffer management in probabilistic peer-to-peer communication protocols. In: Proc. of the 22nd Symp. on Reliable Distributed Systems, pp. 76–85. IEEE, Los Alamitos (2003)Google Scholar
  16. 16.
    Pereira, J., Rodrigues, L., Monteiro, M., Kermarrec, A.M.: NEEM: Networkfriendly epidemic multicast. In: Proc. of the 22nd Symp. on Reliable Distributed Systems, pp. 15–24. IEEE, Los Alamitos (2003)Google Scholar
  17. 17.
    Baehni, S., Eugster, P.T., Guerraoui, R.: Data-aware multicast. In: Proc. of the 5th IEEE Int. Conf. on Dependable Systems and Networks, pp. 233–242 (2004)Google Scholar
  18. 18.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable Peer-To-Peer lookup service for internet applications. In: Proc. of the ACM SIGCOMM 2001 Conf., pp. 149–160. ACM Press, New York (2001)Google Scholar
  19. 19.
    Alima, L.O., Ghodsi, A., Brand, P., Haridi, S.: Multicast in DKS(N; k; f) overlay networks. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 83–95. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable contentaddressable network. ACM SIGCOMM Computer Communication Review 31, 161–172 (2001)CrossRefGoogle Scholar
  21. 21.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D.: Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Communications 22, 41–53 (2004)CrossRefGoogle Scholar
  23. 23.
    Lynch, N.A., Malkhi, D., Ratajczak, D.: Atomic data access in distributed hash tables. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 295–305. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Ahamad, M., Neiger, G., Kohli, P., Burns, J.E., Hutto, P.W.: Casual memory: Definitions, implementation and programming. Distributed Computing 9, 37–49 (1995)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Dynamic and faulttolerant cluster management. In: Proc. of the 5th IEEE Int. Conf. on Peer-to-Peer Computing. IEEE, Los Alamitos (2005)Google Scholar
  26. 26.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  27. 27.
    Gidenstam, A., Koldehofe, B., Papatriantafilou, M., Tsigas, P.: Lightweight causal cluster consistency. Technical Report 2005-09, Computer Science and Engineering, Chalmers University of Technology (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anders Gidenstam
    • 1
  • Boris Koldehofe
    • 2
  • Marina Papatriantafilou
    • 1
  • Philippas Tsigas
    • 1
  1. 1.Department of Computer Science and EngineeringChalmers University of TechnologySweden
  2. 2.School of Computer and Communication Science, EPFLSwitzerland

Personalised recommendations