3D Emotional Agent Architecture

  • Félix F. Ramos
  • Luis Razo
  • Alma V. Martinez
  • Fabiel Zúñiga
  • Hugo I. Piza
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3908)


This chapter presents architecture to design emotional agents evolving in an artificial 3D environment. The agent behavior and environment emulator are independent of implementation. To achieve this, a Language of Interface for Animations in 3D called LIA-3D, is presented. The agent and environment simulator uses LIA to establish communication with each other.


Virtual Environment Mobility Service Agent Behavior Face Animation Primitive Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iván Piza, H., Zúñiga, F., Ramos, F.F.: A Platform to Design and Run Dynamic Virtual Environments. IEEE Cyberworlds 2004, Japan (November 2004) ISBN 0-7695-2140-1Google Scholar
  2. 2.
    Ramos, F., Zúñiga, F., Piza, H.: A 3D-Space Platform for Distributed Applications Management. In: International Symposium and School on Advanced Distributed Systems 2002, Guadalajara, Jal., México (November 2002) ISBN 970-27-0358-1Google Scholar
  3. 3.
    Egges, A., Kshirsagar, S., Magnenat-Thalmann, N.: Generic personality and emotion simulation for conversational agents. Computer Animation and Virtual Worlds 15(1), 1–13 (2004); Published Online: March 8 2004CrossRefGoogle Scholar
  4. 4.
    Logrippo, L., Faci, M., Haj-Hussein, M.: An Introdiction to LOTOS: Learning by Examples. University of Ottawa. Protocols research group. Department of computer scienceGoogle Scholar
  5. 5.
    Zúñiga, F., Piza, H., Ramos, F.: Specifying Agent’s Goals Using Process Algebras. LNCS Advanced Distributed Systems. In: International Symposium and School on Advanced Distributed Systems, Guadalajara, Jalisco, México (Enero 2005)Google Scholar
  6. 6.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  7. 7.
    Fogel, D.B.: Evolutionary Computation. In: Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway (1995)Google Scholar
  8. 8.
    Yao, X.: A review of Evolutionary Artificial. Neural Networks. Commonwealth Scientific and Industrial Research Organisation Division of Building, Construction and Engineering. AustraliaGoogle Scholar
  9. 9.
    Ramos, F.F., Zuñiga, F., Alcala, A., Piza, I.: Specification of Distributed Systems Using Multi-Level Petri nets. In: 2003 IEEE International Conference on Systems, Man & Cybernetics, Hyatt Regency, Washington, D.C., USA, October 5–8 (2003)Google Scholar
  10. 10.
    Costa, P.T., McCrae, R.R.: Normal personality assessment in clinical practice: The NEO personality inventory. Psychological Assessment (4), 5–13 (1992)CrossRefGoogle Scholar
  11. 11.
    Marriott, A.: VHML – Virtual Human Markup Language. School of Computing, Curtin University of Technology, Melbourne, Australia in conjunction with HF2002 and OZCHI2002 (November 29, 2002)Google Scholar
  12. 12.
    Scott Neal Reilly, W.: Believable Social and Emotional Agents, School of Computer Science Carnegie Mellon University (May 1996)Google Scholar
  13. 13.
    Torres, D., Boulanger, P.: The ANIMUS Project: A Framework for the Creation of Synthetic Characters, Department of Computing Science, University of Alberta (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Félix F. Ramos
    • 1
  • Luis Razo
    • 1
  • Alma V. Martinez
    • 1
  • Fabiel Zúñiga
    • 1
  • Hugo I. Piza
    • 1
  1. 1.Multi-Agent Systems Development GroupCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalGuadalajara, JaliscoMéxico

Personalised recommendations