Advertisement

Using a Live-In Laboratory for Ubiquitous Computing Research

  • Stephen S. Intille
  • Kent Larson
  • Emmanuel Munguia Tapia
  • Jennifer S. Beaudin
  • Pallavi Kaushik
  • Jason Nawyn
  • Randy Rockinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3968)

Abstract

Ubiquitous computing researchers are increasingly turning to sensor-enabled “living laboratories” for the study of people and technologies in settings more natural than a typical laboratory. We describe the design and operation of the PlaceLab, a new live-in laboratory for the study of ubiquitous technologies in home settings. Volunteer research participants individually live in the PlaceLab for days or weeks at a time, treating it as a temporary home. Meanwhile, sensing devices integrated into the fabric of the architecture record a detailed description of their activities. The facility generates sensor and observational datasets that can be used for research in ubiquitous computing and other fields where domestic contexts impact behavior. We describe some of our experiences constructing and operating the living laboratory, and we detail a recently generated sample dataset, available online to researchers.

Keywords

Activity Recognition Ubiquitous Computing Java Code Audio Stream Matrix Switcher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abowd, G.D., Mynatt, E.D.: Charting past, present, and future research in ubiquitous computing. ACM Transactions on Computer-Human Interaction 7, 29–58 (2000)CrossRefGoogle Scholar
  2. 2.
    Stone, A.A., Shiffman, S., Schwartz, J.E., Broderick, J.E., Hufford, M.R.: Patient non-compliance with paper diaries. BMJ 324, 1193–1194 (2002)CrossRefGoogle Scholar
  3. 3.
    Gorin, A.A., Stone, A.A.: Recall biases and cognitive errors in retrospective self reports: A call for momentary assessments. In: Baum, A., Revenson, T., Singer, J. (eds.) Handbook of Health Psychology, pp. 405–413. Erlbaum, Mahwah, NJ (2001)Google Scholar
  4. 4.
    Kidd, C.D., Orr, R.J., Abowd, G.D., Atkeson, C.G., Essa, I.A., MacIntyre, B., Mynatt, E., Starner, T.E., Newstetter, W.: The Aware Home: A living laboratory for ubiquitous computing research. In: Streitz, N.A., Hartkopf, V. (eds.) CoBuild 1999. LNCS, vol. 1670, Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Matsouoka, K.: Smart house understanding human behaviors: Who did what, where, and when. In: Proceedings of the 8th World Multi-Conference on Systems, Cybernetics, and Informatics, vol. 3, pp. 181–185 (2004)Google Scholar
  6. 6.
    Tapia, E.M., Intille, S.S., Lopez, L., Larson, K.: The design of a portable kit of wireless sensors for naturalistic data collection. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 117–134. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Intille, S.S., Rondoni, J., Kukla, C., Anacona, I., Bao, L.: A context-aware experience sampling tool. In: Proceedings of CHI 2003 Extended Abstracts on Human Factors in Computing Systems, pp. 972–973. ACM Press, New York (2003)Google Scholar
  8. 8.
    Intille, S.S., Larson, K., Beaudin, J.S., Nawyn, J., Munguia Tapia, E., Kaushik, P.: A living laboratory for the design and evaluation of ubiquitous computing interfaces. In: Extended Abstracts of the 2005 Conference on Human Factors in Computing Systems, pp. 1941–1944. ACM Press, New York (2005)Google Scholar
  9. 9.
    Tran, Q., Calcaterra, G., Mynatt, E.: Cook’s Collage: memory aid display for cooking. In: Proceedings of HOIT 2005 (2005)Google Scholar
  10. 10.
    Dockstader, S.L., Berg, M.J., Tekalp, A.M.: Stochastic kinematic modeling and feature extraction for gait analysis. IEEE Transactions on Image Processing 12, 962–976 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Wilson, D.H., Atkeson, C.G.: Simultaneous Tracking and Activity Recognition (STAR) Using Many Anonymous, Binary Sensors. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 62–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hähnel, D.: Inferring activities from interactions with objects. IEEE Pervasive Computing 3, 50–57 (2004)CrossRefGoogle Scholar
  14. 14.
    Mozer, M.C.: An intelligent environment must be adaptive. IEEE Intelligent Systems, 11–13 (1999)Google Scholar
  15. 15.
    Fields, J.: America’s Families and Living Arrangements: 2003, U.S. Census Bureau, Washington, DC, Current Population Reports, P20-553 (November 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Stephen S. Intille
    • 1
  • Kent Larson
    • 1
  • Emmanuel Munguia Tapia
    • 1
  • Jennifer S. Beaudin
    • 1
  • Pallavi Kaushik
    • 1
  • Jason Nawyn
    • 1
  • Randy Rockinson
    • 1
  1. 1.House_n, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations