An Attack on a Modified Niederreiter Encryption Scheme

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3958)


In [1] a Niederreiter-type public-key cryptosystem based on subcodes of generalized Reed-Solomon codes is presented. In this paper an algorithm is proposed which is able to recover the private key of the aforementioned system from the public key and which is considerably faster than a brute force attack. It is shown that the example parameters proposed in [1] are insecure.


Public key cryptography McEliece encryption Niederreiter encryption error-correcting codes generalized Reed-Solomon codes Sidelnikov-Shestakov attack 


  1. 1.
    Berger, T., Loidreau, P.: How to mask the structure of codes for a cryptographic use. Designs, Codes and Cryptography 35(1), 63–79 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    McEliece, R.: A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, Jet Prop. Lab., California Inst. Tech. 42-44, 114–116 (1978)Google Scholar
  3. 3.
    Niederreiter, N.: Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory 15, 159–166 (1986)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Transactions on Information Theory 24(3), 384–386 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brickell, E., Lee, J.: An observation on the security of McEliece’s public-key cryptosystem. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988)Google Scholar
  6. 6.
    Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory 44(1), 367–378 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sidelnikov, V., Shestakov, S.: On insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Math. Appl. 2(4), 439–444 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gabidulin, E.: Public-key cryptosystems based on linear codes (1995),
  9. 9.
    MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North Holland, Amsterdam (1997)zbMATHGoogle Scholar
  10. 10.
    Deng, R., Li, Y., Wang, X.: On the equivalence of McEliece’s and Niederreiter’s public-key cryptosystems. IEEE Transactions on Information Theory 40(1), 271–273 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Garey, M., Johnson, D.: Computers and Intractability. In: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)Google Scholar
  12. 12.
    Overbeck, R.: A new structural attack for GPT and variants. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 50–63. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Federal Office for Information Security (BSI)BonnGermany

Personalised recommendations