An Enhanced Grid Scheduling with Job Priority and Equitable Interval Job Distribution

  • HyoYoung Lee
  • DongWoo Lee
  • R. S. Ramakrishna
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3947)


The scheduling service is an important component of large scale computing environments. In this paper, we take a local and grid-wise look at the scheduling problem. First an advance backfilling algorithm based on the job square with a wide job priority is presented. Experimental results show that the priority scheduler reduces the mean waiting time to an extent that depends on the proportion of narrow jobs within a workload. Subsequently, we consider a load sharing technique that selects the site in the Grid that is executing the least number of jobs of similar size as that of the current job. The adaptive sharing scheme offers significant benefits in terms of the average weighted waiting time.


Grid Schedule Workload Characteristic Synthetic Workload Workload Trace Priority Scheduler 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ernemann, C., Hamscher, V., Schwiegelshohn, U., Streit, A., Yahyapour, R.: On Advantages of Grid Computing for Parallel Job Scheduling. In: Proc. of 2nd IEEE Int’l Symposium on Cluster Computing and the Grid (CC-GRID 2002), Berlin, Germany, pp. 39–46. IEEE Computer Society Press, Los Alamitos (2002)CrossRefGoogle Scholar
  2. 2.
    Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of global grid computing for job scheduling. In: Proc. of 5th IEEE/ACM Int’l Workshop on Grid Computing, in Conjunction with SuperComputing, GRID 2004, pp. 374–379. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  3. 3.
    Feitelson, D.G.: Packing Schemes for Gang Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1996. LNCS, vol. 1162, pp. 89–110. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Feitelson, D.G., Rudolph, L., Schweigelshohn, U., Sevcik, K.C., Wong, P.: Theory and Practice in Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1997 and JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    Feitelson, D.G.: Metric and Workload Effects on Computer Systems Evaluation. IEEE Computer 36(9), 18–25 (2003)CrossRefGoogle Scholar
  6. 6.
    Lawson, B.G., Smirni, E.: Multiple-Queue Backfilling Scheduling with Priorities and Reservations for Parallel Systems. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 72–87. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Lifka, D.: The ANL/IBM SP Scheduling System. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 295–303. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Lo, V., Mache, J., Windisch, K.: A Comparative Study of Real Workload Traces and Synthetic Workload Models for Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1998. LNCS, vol. 1459, p. 25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Mu’alem, A.W., Feitelson, D.G.: Utilization, Predictability, Workloads, and User Runtime Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Trans. Parallel & Distributed Systems 12(6), 529–543 (2001)CrossRefGoogle Scholar
  10. 10.
    Perkovic, D., Keleher, P.J.: Randomization, Speculation, and Adaptation in Batch Schedulers. In: Proceedings of Supercomputing 2000 (November 2000)Google Scholar
  11. 11.
    Schwiegelshohn, U., Yahyapour, R.: Analysis of First-Come-First-Serve Parallel Job Scheduling. In: Proc. of 9th SIAM Symposium on Discrete Algorithms, pp. 629–638 (1998)Google Scholar
  12. 12.
    Snell, Q.O., Clement, M.J., Jackson, D.B.: Preemption Based Backfill. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 24–37. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Srinivasan, S., Kettimuthu, R., Subramani, V., Sadayappan, P.: Characterization of Backfilling Strategies for Parallel Job Scheduling. In: Proceedings of 2002 Intl. Workshops on Parallel Processing (2002)Google Scholar
  14. 14.
    Talby, D., Feitelson, D.G.: Supporting Priorities and Improving Utilization of the IBM SP Scheduler Using Slack-Based Backfilling. In: Proc. of 13th Int’l Parallel Processing Symp., pp. 513–517 (1999)Google Scholar
  15. 15.
    Tan, L., Tari, Z.: Dynamic Task Assignment in Server Farm: Better Performance by Task Grouping. In: Proc. of IEEE Computers and Communication, pp. 175–180 (2002)Google Scholar
  16. 16.
    Tari, Z., Broberg, J., Zomaya, A.Y., Baldoni, R.: A least flow-time first load sharing approach for distributed server farm. Journal of Parallel and Distributed Computing 65(7), 832–842 (2005)CrossRefGoogle Scholar
  17. 17.
    Yue, J.: Global Backfilling Scheduling in Multiclusters. In: Manandhar, S., Austin, J., Desai, U., Oyanagi, Y., Talukder, A.K. (eds.) AACC 2004. LNCS, vol. 3285, pp. 232–239. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Zotkin, D., Keleher, P.J.: Job-Length Estimation and Performance in Backfilling Schedulers. In: Proc. of 8th Int’l Symp. High-Performance Distributed Computing, pp. 39–46. IEEE CS Press, Los Alamitos (1999)Google Scholar
  19. 19.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • HyoYoung Lee
    • 1
  • DongWoo Lee
    • 1
  • R. S. Ramakrishna
    • 1
  1. 1.Department of Information and CommunicationsGwangju Institute of Science and TechnologyGwangjuRepublic of Korea

Personalised recommendations