Advertisement

Unsupervised Patch-Based Image Regularization and Representation

  • Charles Kervrann
  • Jérôme Boulanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3954)

Abstract

A novel adaptive and patch-based approach is proposed for image regularization and representation. The method is unsupervised and based on a pointwise selection of small image patches of fixed size in the variable neighborhood of each pixel. The main idea is to associate with each pixel the weighted sum of data points within an adaptive neighborhood and to use image patches to take into account complex spatial interactions in images. In this paper, we consider the problem of the adaptive neighborhood selection in a manner that it balances the accuracy of the estimator and the stochastic error, at each spatial position. Moreover, we propose a practical algorithm with no hidden parameter for image regularization that uses no library of image patches and no training algorithm. The method is applied to both artificially corrupted and real images and the performance is very close, and in some cases even surpasses, to that of the best published denoising methods.

Keywords

Texture Synthesis Denoising Method Adaptive Neighborhood Image Regularization Small Image Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aujol, J.F., Aubert, G., Blanc-Féraud, L., Chambolle, A.: Image decomposition into a bounded variation component and an oscillating component. J. Math. Imag. Vis. 22, 71–88 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Awate, S.P., Whitaker, R.T.: Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering. In: Proc. CVPR 2005, San Diego (2005)Google Scholar
  3. 3.
    Barash, D., Comaniciu, D.: A Common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vis. Comp. 22, 73–81 (2004)CrossRefGoogle Scholar
  4. 4.
    Black, M.J., Sapiro, G.: Edges as outliers: anisotropic smoothing using local image statistics. In: Proc. Scale-Space 1999, Kerkyra (1999)Google Scholar
  5. 5.
    Brox, T., Weickert, J.: A TV flow based local scale measure for texture discrimination. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3022, pp. 578–590. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boulanger, J., Kervrann, C., Bouthemy, P.: Adaptive spatio-temporal restoration for 4D fluorescence microscopic imaging. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 893–901. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Buades, A., Coll, B., Morel, J.M.: Image denoising by non-local averaging. In: Proc. CVPR 2005, San Diego (2005)Google Scholar
  8. 8.
    Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean-shift and data-driven scale selection. In: Proc. ICCV 2001, Vancouver (2001)Google Scholar
  9. 9.
    Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based inpainting. IEEE T. Image Process. 13, 1200–1212 (2004)CrossRefGoogle Scholar
  10. 10.
    Efros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proc. ICCV 1999, Kerkyra (1999)Google Scholar
  11. 11.
    Elad, M.: On the bilateral filter and ways to improve it. IEEE T. Image Process. 11, 1141–1151 (2002)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comp. Vis. 40, 25–47 (2000)CrossRefMATHGoogle Scholar
  13. 13.
    Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational denoising using an adaptive fidelity term. In: Proc. VLSM 2003, Nice (2003)Google Scholar
  14. 14.
    Godtliebsen, F., Spjotvoll, E., Marron, J.S.: A nonlinear Gaussian filter applied to images with discontinuities. J. Nonparametric Stat. 8, 21–43 (1997)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Jojic, N., Frey, B., Kannan, A.: Epitomic analysis of appearance and shape. In: Proc. ICCV 2003, Nice (2003)Google Scholar
  16. 16.
    Katkovnik, V., Egiazarian, K., Astola, J.: Adaptive window size image denoising based on intersection of confidence intervals (ICI) rule. J. Math. Imag. Vis. 16, 223–235 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Kervrann, C.: An adaptive window approach for image smoothing and structures preserving. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 132–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Kervrann, C., Boulanger, J.: Local adaptivity to variable smoothness for exemplar-based image denoising and representation. INRIA RR-5624 (2005)Google Scholar
  19. 19.
    Lee, J.S.: Digital image smoothing and the sigma filter. Comp. Vis. Graph. Image Process. 24, 255–269 (1983)CrossRefGoogle Scholar
  20. 20.
    Lepskii, O.: On a problem of adaptive estimation on white Gaussian noise. Th. Prob. Appl. 35, 454–466 (1980)CrossRefGoogle Scholar
  21. 21.
    Lepskii, O.V., Mammen, E., Spokoiny, V.G.: Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Stat. 25, 929–947 (1997)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Mrazek, P., Weickert, J., Bruhn, A.: On robust estimation and smoothing with spatial and tonal kernels. Preprint 51, U. Bremen (2004)Google Scholar
  23. 23.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and variational problems. Comm. Pure and Appl. Math. 42, 577–685 (1989)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE T. Patt. Anal. Mach. Intell. 12, 229–239 (1990)Google Scholar
  25. 25.
    Polzehl, J., Spokoiny, V.: Adaptive weights smoothing with application to image restoration. J. Roy. Stat. Soc. B 62, 335–354 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Portilla, J., Strela, V., Wainwright, M., Simoncelli, E.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE T. Image Process. 12, 1338–1351 (2003)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors with applications. In: Proc. CVPR 2005, San Diego (2005)Google Scholar
  28. 28.
    Rudin, L., Osher, S., Fatemi, E.: Nonlinear Total Variation based noise removal algorithms. Physica D 60(2992), 259–268 (1992)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sochen, N., Kimmel, R., Bruckstein, A.M.: Diffusions and confusions in signal and image processing. J. Math. Imag. Vis. 14, 237–244 (2001)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Starck, J.L., Candes, E., Donoho, D.L.: The Curvelet transform for image denoising. IEEE T. Image Process. 11, 670–684 (2002)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proc. ICCV 1998, Bombay (1998)Google Scholar
  32. 32.
    Tschumperlé, D.: Curvature-preserving regularization of multi-valued images using pDE’s. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 295–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  33. 33.
    van de Weijer, J., van den Boomgaard, R.: Local mode filtering. In: Proc. CVPR 2001, Kauai (2001)Google Scholar
  34. 34.
    Zhang, D., Wang, Z.: Image information restoration based on long-range correlation. IEEE T. Circ. Syst. Video Technol. 12, 331–341 (2002)CrossRefGoogle Scholar
  35. 35.
    Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. Int. J. Comp. Vis. 27, 107–126 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Charles Kervrann
    • 1
    • 2
  • Jérôme Boulanger
    • 1
    • 2
  1. 1.IRISA/INRIA Rennes, Projet VistaCampus Universitaire de BeaulieuRennesFrance
  2. 2.INRA – MIADomaine de VilvertJouy-en-JosasFrance

Personalised recommendations