Advertisement

Face Authentication Using Adapted Local Binary Pattern Histograms

  • Yann Rodriguez
  • Sébastien Marcel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3954)

Abstract

In this paper, we propose a novel generative approach for face authentication, based on a Local Binary Pattern (LBP) description of the face. A generic face model is considered as a collection of LBP-histograms. Then, a client-specific model is obtained by an adaptation technique from this generic model under a probabilistic framework. We compare the proposed approach to standard state-of-the-art face authentication methods on two benchmark databases, namely XM2VTS and BANCA, associated to their experimental protocol. We also compare our approach to two state-of-the-art LBP-based face recognition techniques, that we have adapted to the verification task.

Keywords

Face Image Local Binary Pattern Local Binary Pattern Feature Local Binary Pattern Operator Local Binary Pattern Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Messer, K., Kittler, J., Sadeghi, M.T., Hamouz, M., Kostyn, A., Marcel, S., Bengio, S., Cardinaux, F., Sanderson, C., Poh, N., Rodriguez, Y., Kryszczuk, K.M., Czyz, J., Vandendorpe, L., Ng, J., Cheung, H., Tang, B.: Face authentication competition on the BANCA database. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 8–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Turk, M., Pentland, A.: Eigenface for recognition. Journal of Cognitive Neuro-science 3(1), 70–86 (1991)Google Scholar
  3. 3.
    Belhumeur, P., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. In: ECCV 1996, pp. 45–58. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Zhang, G., Huang, X., Li, S., Wang, Y., Wu, X.: Boosting local binary pattern (LBP)-based face recognition. In: Li, S.Z., Lai, J.-H., Tan, T., Feng, G.-C., Wang, Y. (eds.) SINOBIOMETRICS 2004. LNCS, vol. 3338, pp. 179–186. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Marcel, S.: A symmetric transformation for LDA-based face verification. In: Proceedings of the 6th International Conference on Automatic Face and Gesture Recognition, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  7. 7.
    Jonsson, K., Matas, J., Kittler, J., Li, Y.: Learning support vectors for face verification and recognition. In: 4th International Conference on Automatic Face and Gesture Recognition, pp. 208–213 (2000)Google Scholar
  8. 8.
    Li, Y., Kittler, J., Matas, J.: On matching scores of LDA-based face verification. In: Pridmore, T., Elliman, D. (eds.) Proceedings of the British Machine Vision Conference BMVC 2000, British Machine Vision Association (2000)Google Scholar
  9. 9.
    Kittler, J., Ghaderi, R., Windeatt, T., Matas, G.: Face verification via ECOC. In: British Machine Vision Conference (BMVC 2001), pp. 593–602 (2001)Google Scholar
  10. 10.
    Cardinaux, F., Sanderson, C., Marcel, S.: Comparison of MLP and GMM classifiers for face verification on XM2VTS. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 911–920. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Nefian, A., Hayes, M.: Face recognition using an embedded HMM. In: Proceedings of the IEEE Conference on Audio and Video-based Biometric Person Authentication (AVBPA), pp. 19–24 (1999)Google Scholar
  12. 12.
    Cardinaux, F., Sanderson, C., Bengio, S.: Face verification using adapted generative models. In: IEEE Conference on Automatic Face and Gesture Recognition, AFGR (2004)Google Scholar
  13. 13.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29 (1996)Google Scholar
  14. 14.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine intelligence 24, 971–987 (2002)CrossRefMATHGoogle Scholar
  15. 15.
    Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under bayesian framework. In: Proc. Third International Conference on Image and Graphics (ICIG), Hong Kong, China, pp. 306–309 (2004)Google Scholar
  16. 16.
    Huang, X., Li, S., Wang, Y.: Shape localization based on statistical method using extended local binary pattern. In: Proc. Third International Conference on Image and Graphics (ICIG), Hong Kong, China, pp. 184–187 (2004)Google Scholar
  17. 17.
    Takala, V., Ahonen, T., Pietikäinen, M.: Block-based methods for image retrieval using local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 882–891. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Heikkilä, M., Pietikäinen, M., Heikkilä, J.: A texture-based method for detecting moving objects. In: Proc. the 15th British Machine Vision Conference (BMVC), London, UK, vol. 1, pp. 187–196 (2004)Google Scholar
  19. 19.
    Zabih, R., Woodfill, J.: A non-parametric approach to visual correspondence. IEEE Transactions on Pattern Analysis and Machine intelligence (1996)Google Scholar
  20. 20.
    Fröba, B., Ernst, A.: Face detection with the modified census transform. In: IEEE Conference on Automatic Face and Gesture Recognition, AFGR (2004)Google Scholar
  21. 21.
    Lucey, S., Chen, T.: A GMM parts based face representation for improved verification through relevance adaptation. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), Washington DC, USA (2004)Google Scholar
  22. 22.
    Sanderson, C., Paliwal, K.: Fast features for face authentication under illumination direction changes. Pattern Recognition Letters, 2409–2419 (2003)Google Scholar
  23. 23.
    Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian mixture models. Digital Signal Processing 10(1-3) (2000)Google Scholar
  24. 24.
    Gauvain, J.L., Lee, C.H.: Maximum a posteriori estimation for multivariate gaussian mixture observation of markov chains. IEEE Transactions on Speech Audio Processing 2, 291–298 (1994)CrossRefGoogle Scholar
  25. 25.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: The extended M2VTS database. In: Second International Conference on Audio and Video-based Biometric Person Authentication (1999)Google Scholar
  26. 26.
    Bailly-Baillière, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariéthoz, J., Matas, J., Messer, K., Popovici, V., Porée, F., Ruiz, B., Thiran, J.P.: The BANCA database and evaluation protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, Springer, Heidelberg (2003)Google Scholar
  27. 27.
    Sadeghi, M., Kittler, J., Kostin, A., Messer, K.: A comparative study of automatic face verification algorithms on the banca database. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 35–43. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Huang, X., Li, S.Z., Wang, Y.: Jensen-shannon boosting learning for object recognition. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR), San Diego, USA (2005)Google Scholar
  29. 29.
    Collobert, R., Bengio, S., Mariéthoz, J.: Torch: a modular machine learning software library. Technical Report 02-46, IDIAP, Martigny, Switzerland (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yann Rodriguez
    • 1
  • Sébastien Marcel
    • 1
  1. 1.IDIAP Research InstituteMartignySwitzerland

Personalised recommendations