The 4-Source Photometric Stereo Under General Unknown Lighting

  • Chia-Ping Chen
  • Chu-Song Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3953)


Many previous works on photometric stereo have shown how to recover the shape and reflectance properties of an object using multiple images taken under a fixed viewpoint and variable lighting conditions. However, most of them only dealt with a single point light source in each image. In this paper, we show how to perform photometric stereo with four images which are taken under distant but general lighting conditions. Our method is based on the representation that uses low-order spherical harmonics for Lambertian objects. Attached shadows are considered in this representation. We show that the lighting conditions can be estimated regardless of object shape and reflectance properties. The estimated illumination conditions can then help to recover the shape and reflectance properties.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woodham, R.J.: Photometric Method for Determining Surface Orientation from Multiple Images. Optical Engineering 19(1), 139–144 (1980)Google Scholar
  2. 2.
    Coleman Jr., E.N., Jain, R.: Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. CGIP 18(4), 309–328 (1982)Google Scholar
  3. 3.
    Barsky, S., Petrou, M.: The 4-source photometric stereo technique for threedimensional surfaces in the presence of highlights and shadows. PAMI 25(10), 1239–1252 (2003)Google Scholar
  4. 4.
    Moses, Y.: Face recognition: generalization to novel images. Ph.D. Thesis, Weizmann Institute of Science (1993)Google Scholar
  5. 5.
    Shashua, A.: On Photometric Issues in 3D Visual Recognition from a Single 2D Image. IJCV 21(1-2), 99–122 (1997)CrossRefGoogle Scholar
  6. 6.
    Hayakawa, H.: Photometric stereo under a light source with arbitrary motion. JOSA 11(11), 3079–3089 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The Bas-Relief Ambiguity. IJCV 35(1), 33–44 (1999)CrossRefGoogle Scholar
  8. 8.
    Fan, J., Wolff, L.B.: Surface Curvature and Shape Reconstruction from Unknown Multiple Illumination and Integrability. CVIU 65(2), 347–359 (1997)Google Scholar
  9. 9.
    Yuille, A., Snow, D., Epstein, R., Belhumeur, P.: Determining Generative Models of Objects Under Varying Illumination: Shape and Albedo from Multiple Images Using SVD and Integrability. IJCV 35(3), 203–222 (1999)CrossRefGoogle Scholar
  10. 10.
    Tagare, H.D., de Figueiredo, R.J.P.: A theory of photometric stereo for a class of diffuse non-lambertian surfaces. PAMI 13(2), 133–152 (1991)Google Scholar
  11. 11.
    Kay, G., Caelly, T.: Estimating the parameters of an illumination model using photometric stereo. GMIP 57(5), 365–388 (1995)Google Scholar
  12. 12.
    Solomon, F., Ikeuchi, K.: Extracting the shape and roughness of specular lobe objects using four light photometric stereo. PAMI 18(4), 449–454 (1996)Google Scholar
  13. 13.
    Nayar, S.K., Ikeuchi, K., Kanade, T.: Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Trans. on Robotics and Automation 6(4), 418–431 (1990)CrossRefGoogle Scholar
  14. 14.
    Hertzmann, A., Seitz, S.M.: Shape and materials by example: a photometric stereo approach. CVPR (2003)Google Scholar
  15. 15.
    Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and Spatially- Varying BRDFs From Photometric Stereo. ICCV (2005)Google Scholar
  16. 16.
    Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. PAMI 25(2), 218–233 (2003)Google Scholar
  17. 17.
    Ramamoorthi, R., Hanrahan, P.: On the relationship between radiance and irradiance: determining the illumination from images of a convex Lambertian object. Journal of the Optical Society of America A 18(10), 2448–2459 (2001)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Basri, R., Jacobs, D.: Photometric Stereo with General Unknown Lighting. CVPR (2001)Google Scholar
  19. 19.
    Kanatani, K.: Geometric Computation for Machine Vision. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  20. 20.
    Ballard, D.H., Brown, C.M.: Computer Vision. Prentice Hall, Englewood Cliffs (1982)Google Scholar
  21. 21.
    Georghiades, A.S., Belhumeur, P.N.: From Few to many: Illumination cone models for face recognition under variable lighting and pose. PAMI 23(6), 643–660 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chia-Ping Chen
    • 1
    • 2
  • Chu-Song Chen
    • 1
    • 3
  1. 1.Institute of Information ScienceAcademia SinicaTaipeiTaiwan
  2. 2.Department of Computer Science and Information EngineeringNational Taiwan UniversityTaipeiTaiwan
  3. 3.Graduate Institute of Networking and MultimediaNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations