Kernel-Predictability: A New Information Measure and Its Application to Image Registration

  • Héctor Fernando Gómez-García
  • José L. Marroquín
  • Johan Van Horebeek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3953)


A new information measure for probability distributions is presented; based on it, a similarity measure between images is derived, which is used for constructing a robust image registration algorithm based on random sampling, similar to classical approaches like mutual information. It is shown that the registration method obtained with the new similarity measure shows a significantly better performance for small sampling sets; this makes it specially suited for the estimation of non-parametric deformation fields, where the estimation of the local transformation is done on small windows. This is confirmed by extensive comparisons using synthetic deformations of real images.


Mutual Information Image Registration Information Measure Registration Method Normalize Mutual Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gottesfeld, L.: A survey of image registration techniques. ACM Computing Surveys 24(4), 325–376 (1992)CrossRefGoogle Scholar
  2. 2.
    Maintz, A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)CrossRefGoogle Scholar
  3. 3.
    Josien, P.W., Pluim, J.B., Maintz, A., Viergever, A.: Mutual information based registration of medical images: a survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003)CrossRefGoogle Scholar
  4. 4.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  5. 5.
    Szeliski, R., Coughlan, J.: Spline-based image registration. International Journal of Computer Vision 22(3), 199–218 (1997)CrossRefGoogle Scholar
  6. 6.
    Thirion, J.-P.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 2(3), 243–260 (1998)CrossRefGoogle Scholar
  7. 7.
    Aubert, G., Deriche, R., Kornprobst, P.: Computing optical flow via variational techniques. SIAM Journal on Applied Mathematics 60(1), 156–182 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Viola, P., Wells III, W.: Alignment by Maximization of Mutual Information. In: ICCV, pp. 16–23 (1995)Google Scholar
  9. 9.
    Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., Marchal, G.: Automated multi-modality image registration based on information theory. In: Bizais, Y., Barillot, C., Di Paola, R. (eds.) Information Processing in Medical Imaging, pp. 263–274. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  10. 10.
    Hermosillo, G., Chefd’hotel, C., Faugeras, O.: Variational methods for multimodal image matching. International Journal of Computer Vision 50(3), 329–343 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    DAgostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal image registration using mutual information. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 541–548. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Geoffrey, E.: Mutual information as a stereo correspondence measure. Technical Report MS-CIS-00-20, University of Pennsylvania (2000)Google Scholar
  13. 13.
    Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: ICCV, pp. 1033–1040 (2003)Google Scholar
  14. 14.
    Dowson, N., Bowden, R.: Metric Mixtures for Mutual Information Tracking. In: ICPR, vol. 2, pp. 752–756 (2004)Google Scholar
  15. 15.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 32(1), 71–86 (1999)CrossRefGoogle Scholar
  16. 16.
    Lee, A.J.: U-Statistics, Theory and Practice. Marcel Dekker Inc., New York (1990)MATHGoogle Scholar
  17. 17.
    Lehman, E.L.: Elements of Large Sample Theory. Springer, New York (1999)CrossRefGoogle Scholar
  18. 18.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2003)Google Scholar
  19. 19.
    Singh, M., Arora, H., Ahuja, N.: Robust registration and tracking using kernel density correlation. CVPRW 11(11), 174 (2004)Google Scholar
  20. 20.
  21. 21.
    Barron, J.L., Fleet, D.J., Bauchemin, S.S.: Performance of Optical Flow Technics. IJCV 12(1), 43–77 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Héctor Fernando Gómez-García
    • 1
  • José L. Marroquín
    • 1
  • Johan Van Horebeek
    • 1
  1. 1.Center for Research in Mathematics (CIMAT)GuanajuatoMéxico

Personalised recommendations