Revisiting the Brightness Constraint: Probabilistic Formulation and Algorithms

  • Venu Madhav Govindu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3953)


In this paper we introduce a principled approach to modeling the image brightness constraint for optical flow algorithms. Using a simple noise model, we derive a probabilistic representation for optical flow. This representation subsumes existing approaches to flow modeling, provides insights into the behaviour and limitations of existing methods and leads to modified algorithms that outperform other approaches that use the brightness constraint. Based on this representation we develop algorithms for flow estimation using different smoothness assumptions, namely constant and affine flow. Experiments on standard data sets demonstrate the superiority of our approach.


Patch Size Great Circle Single Pixel Smoothness Assumption Orientation Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  2. 2.
    Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  3. 3.
    Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of DARPA Workshop, pp. 121–130 (1981)Google Scholar
  4. 4.
    Farneback, G.: Very high accuracy velocity estimation using orientation tensors, parametric motion, and simultaneous segmentation of the motion field. In: Proc. International Conf. on Computer Vision, vol. 1, pp. 77–80 (2001)Google Scholar
  5. 5.
    Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision. International Journal of Computer Vision (to appear)Google Scholar
  6. 6.
    Bruhn, A., Weickert, J., Schnorr, C.: Lucas/kanade meets horn/schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61, 211–231 (2005)CrossRefGoogle Scholar
  7. 7.
    Memin, E., Perez, P.: Hierarchical estimation and segmentation of dense motion fields. International Journal of Computer Vision 46, 129–155 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Weber, J., Malik, J.: Robust computation of optical-flow in a multiscale differential framework. International Journal of Computer Vision 14, 67–81 (1995)CrossRefGoogle Scholar
  9. 9.
    Nestares, O., Fleet, D., Heeger, D.: Likelihood functions and confidence bounds for totalleast- squares problems. In: Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, vol. I, pp. 523–530 (2000)Google Scholar
  10. 10.
    Wang, S., Markandey, V., Reid, A.: Total least squares fitting spatiotemporal derivatives to smooth optical flow field. In: Proc. of the SPIE: Signal and Data processing of Small Targets, vol. 1698, pp. 42–55 (1992)Google Scholar
  11. 11.
    Weiss, Y., Fleet, D.J.: Velocity likelihoods in biological and machine vision. In: Probabilistic Models of the Brain: Perception and Neural Function, pp. 77–96. MIT Press, Cambridge (2002)Google Scholar
  12. 12.
    Simoncelli, E.P., Adelson, E.H., Heeger, D.J.: Probability distributions of optical flow. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 310–315 (1991)Google Scholar
  13. 13.
    Bergen, J., Anandan, P., Hanna, K., Hingorani, R.: Hierarchical model- based motion estimation. In: Proc. of European Conference on Computer Vision, pp. 237–252 (1992)Google Scholar
  14. 14.
    Wang, J., Adelson, E.: Representing moving images with layers. IEEE Transactions on Image Processing 3, 625–638 (1994)CrossRefGoogle Scholar
  15. 15.
    Ju, S., Black, M., Jepson, A.: Skin and bones: Multi-layer, locally affine, optical flow and regularization with transparency. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 307–314 (1996)Google Scholar
  16. 16.
    Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia (1991)zbMATHGoogle Scholar
  17. 17.
    Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and total least squares. SIAM Journal on Matrix Analysis and Applications 21, 185–194 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Liu, H., Chellappa, R., Rosenfeld, A.: Accurate dense optical flow estimation using adaptive structure tensors and a parametric model. IEEE Transactions on Image Processing 12, 1170–1180 (2003)CrossRefGoogle Scholar
  19. 19.
    Chojnacki, W., Brooks, M., van den Hengel, A.: Rationalising the renormalisation method of kanatani. Journal of Mathematical Imaging and Vision 14, 21–38 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Farneback, G.: Fast and accurate motion estimation using orientation tensors and parametric motion models. In: Proc. of 15th International Conference on Pattern Recognition vol. 1, pp. 135–139 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Venu Madhav Govindu
    • 1
  1. 1.HIG-25Simhapuri LayoutVisakhapatnamIndia

Personalised recommendations