A Theory of Multiple Orientation Estimation

  • Matthias Mühlich
  • Til Aach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3952)


Estimation of local orientations in multivariate signals (including optical flow estimation as special case of orientation in space-time-volumes) is an important problem in image processing and computer vision. Modelling a signal using only a single orientation is often too restrictive, since occlusions and transparency happen frequently, thus necessitating the modelling and analysis of multiple orientations.

In this paper, we therefore develop a unifying mathematical model for multiple orientations: beyond describing an arbitrary number of orientations in multivariate vector-valued image data such as color image sequences, it allows the unified treatment of transparently and occludingly superimposed oriented structures. Based on this model, we derive novel estimation schemes for an arbitrary number of superimposed orientations in bivariate images as well as for double orientations in signals of arbitrary signal dimensionality. The estimated orientations themselves, but also features like the number of local orientations or the angles between multiple orientations (which are invariant under rotation) can be used for various inspection, tracking and segmentation problems. We evaluate the performance of our framework on both synthetic and real data.


Local Orientation Symmetric Tensor Structure Tensor Orientation Vector Outer Product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Förstner, W.: A feature based corresponding algorithm for image matching. Intl. Arch. of Photogrammetry and Remote Sensing 26, 150–166 (1986)Google Scholar
  2. 2.
    Bigün, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proc. ICCV 1987, London, UK, pp. 433–438 (1987)Google Scholar
  3. 3.
    Mester, R.: The generalization, optimization and information-theoretic justification of filter-based and autocovariance based motion estimation. In: IEEE International Conference on Image Processing, Barcelona, Spain (2003)Google Scholar
  4. 4.
    Granlund, G., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Dordrecht (1995)CrossRefGoogle Scholar
  5. 5.
    Eberly, D., Gardner, R., Morse, B., Pizer, S., Scharlach, C.: Ridges for image analysis. Technical Report TR93-055, Dep. of Computer Science, Univ. of North Carolina, Chapel Hill, NC, USA (1993)Google Scholar
  6. 6.
    Jacob, M., Unser, M.: Design of steerable filters for feature detection using canny-like criteria. IEEE Trans. PAMI 26, 1007–1019 (2004)CrossRefGoogle Scholar
  7. 7.
    Felsberg, M., Granlund, G.: POI detection using channel clustering and the 2d energy tensor. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 103–110. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Köthe, U.: Integrated edge and junction detection with the boundary tensor. In: Proc. ICCV 2003, Nice, France, vol. 1, pp. 424–431 (2003)Google Scholar
  9. 9.
    Köthe, U., Felsberg, M.: Riesz-transforms versus derivatives: On the relationship between the boundary tensor and the energy tensor. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 179–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Shizawa, M., Mase, K.: Simultaneous multiple optical flow estimation. In: Proc. Int. Conf. Pattern Recognition, pp. 274–278 (1990)Google Scholar
  11. 11.
    Shizawa, M., Mase, K.: A unified computational theory for motion transparency and motion boundaries based on eigenenergy analysis. In: Proc. CVPR 1991, pp. 289–295 (1991)Google Scholar
  12. 12.
    Shizawa, M., Iso, T.: Direct representation and detecting of multi-scale, multi-orientation fields using local differentiation filters. In: Proc. CVPR 1993, pp. 508–514 (1993)Google Scholar
  13. 13.
    Aach, T., Stuke, I., Mota, C., Barth, E.: Estimation of multiple local orientations in image signals. In: Proc. ICASSP 2004, Montreal, Canada, pp. 553–556 (2004)Google Scholar
  14. 14.
    Mota, C., Aach, T., Stuke, I., Barth, E.: Estimation of multiple orientations in multi-dimensional signals. In: Proc. ICIP 2004, Singapore, pp. 2665–2668 (2004)Google Scholar
  15. 15.
    Mota, C., Stuke, I., Aach, T., Barth, E.: Estimation of multiple orientations at corners and junctions. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 163–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Di Zenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics, and Image Processing 33, 116–125 (1986)CrossRefMATHGoogle Scholar
  17. 17.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular patterns. In: Proc. ISPRS Intercomm. Workshop, pp. 281–305 (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Matthias Mühlich
    • 1
  • Til Aach
    • 1
  1. 1.RWTH Aachen UniversityAachenGermany

Personalised recommendations