Advertisement

Super-Resolution of 3D Face

  • Gang Pan
  • Shi Han
  • Zhaohui Wu
  • Yueming Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3952)

Abstract

Super-resolution is a technique to restore the detailed information from the degenerated data. Lots of previous work is for 2D images while super-resolution of 3D models was little addressed. This paper focuses on the super-resolution of 3D human faces. We firstly extend the 2D image pyramid model to the progressive resolution chain (PRC) model in 3D domain, to describe the detail variation during resolution decreasing. Then a consistent planar representation of 3D faces is presented, which enables the analysis and comparison among the features of the same facial part for the subsequent restoration process. Finally, formulated as solving an iterative quadratic system by maximizing a posteriori, a 3D restoration algorithm using PRC features is given. The experimental results on USF HumanID 3D face database demonstrate the effectiveness of the proposed approach.

Keywords

Face Database Tail Structure Superresolution Image Image Formation Process Hallucinate Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR 2004, vol. I, pp. 275–282 (2004)Google Scholar
  2. 2.
    Atkins, C.B., Bouman, C.A., Allebach, J.P.: Tree-Based Resolution Synthesis. In: Conf. on Image Proc. Image Quality and Image Capture Sys. (PICS 1999), pp. 405–410 (1999)Google Scholar
  3. 3.
    Morse, B.S., Schwartzwald, D.: Image magnification using level-set reconstruction. In: CVPR 2001, vol. I, pp. 333–340 (2001)Google Scholar
  4. 4.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Computer Graphics and Applications 22(2), 56–65 (2002)CrossRefGoogle Scholar
  5. 5.
    Cheeseman, P., Kanefsky, B., Kraft, R., Stutz, J.: Super-Resolved Surface Reconstruction from Multiple Images, NASA Technical Report, FIA-94-12 (1994)Google Scholar
  6. 6.
    Smelyanskiy, V.N., Cheeseman, P., Maluf, D.A., Morris, R.D.: Bayesian super-resolved surface reconstruction from images. In: CVPR 2000, June 2000, vol. I, pp. 375–382 (2000)Google Scholar
  7. 7.
    Sun, J., Zheng, N.-N., Tao, H., Shum, H.-Y.: Image hallucination with primal sketch priors. In: CVPR 2003, vol. II, pp. 729–736 (2003)Google Scholar
  8. 8.
    Elad, M., Feuer, A.: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Transactions on Image Processing 6(12), 1646–1658 (1997)CrossRefGoogle Scholar
  9. 9.
    Elad, M., Hel-Or, Y.: A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Transactions on Image Processing 10(8), 1187–1193 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE PAMI 24(9), 1167–1183 (2002)CrossRefGoogle Scholar
  11. 11.
    Lin, Z., Shum, H.-Y.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE PAMI 26(1), 83–97 (2004)CrossRefGoogle Scholar
  12. 12.
    Baker, S., Kanade, T.: Hallucinating faces. In: 4th IEEE Int’l Conf. on Automatic Face and Gesture Recognition, March 2000, pp. 83–88 (2000)Google Scholar
  13. 13.
    Liu, C., Shum, H.-Y., Zhang, C.-S.: A two-step approach to hallucinating faces: global parametric model and local nonparametric model. In: CVPR 2001, pp. 192–198 (2001)Google Scholar
  14. 14.
    Wu, Y., Pan, G., Wu, Z.: Face Authentication based on Multiple Profiles Extracted from Range Data. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 515–522. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Chang, K.I., Bowyer, K.W., Flynn, P.J.: An evaluation of multimodal 2D+3D face biometrics. IEEE PAMI 27(4), 619–624 (2005)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Pan, G., Wu, Z., Wang, Y.: Exploring Facial Expression Effects in 3D Face Recognition Using Partial ICP. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3851, pp. 581–590. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Riklin-Raviv, T., Shashua, A.: The Quotient images: Class based recognition and synthesis under varying illumination. In: CVPR 1999, pp. 566–571 (1999)Google Scholar
  18. 18.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic Parameterizations of Surface Meshes. Computer Graphics Forum (Eurographics) 21(3), 209–218 (2002)CrossRefGoogle Scholar
  19. 19.
    Gray, A.: Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd edn. CRC Press, Boca Raton (1997)Google Scholar
  20. 20.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. 95, 8431–8435 (1998)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Blanz, V., Vetter, T.: “Morphable Model for the Synthesis of 3D Faces. In: SIGGRAPH 1999, pp. 187–194 (1999)Google Scholar
  22. 22.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: SIGGRAPH 1993, pp. 19–26 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gang Pan
    • 1
  • Shi Han
    • 1
  • Zhaohui Wu
    • 1
  • Yueming Wang
    • 1
  1. 1.Dept. of Computer ScienceZhejiang UniversityHangzhouChina

Personalised recommendations