An Affine Invariant of Parallelograms and Its Application to Camera Calibration and 3D Reconstruction

  • F. C. Wu
  • F. Q. Duan
  • Z. Y. Hu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3952)


In this work, a new affine invariant of parallelograms is introduced, and the explicit constraint equations between the intrinsic matrix of a camera and the similar invariants of a parallelogram or a parallelepiped are established using this affine invariant. Camera calibration and 3D reconstruction from parallelograms are systematically studied based on these constraints. The proposed theoretical results and algorithms have wide applicability as parallelograms and parallelepipeds are not rare in man-made scenes. Experimental results on synthetic and real images validate the proposed approaches.


Constraint Equation Camera Calibration Intrinsic Parameter Camera Center Camera Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel-Aziz, Y.I., Karara, H.M.: Direct linear transformation from comparator coordinates into object space coordinates. In: ASP Symposimy on Colse-Range Photogrammetry, pp. 1–18 (1971)Google Scholar
  2. 2.
    Tsai, R., Lenz, R.K.: A technique for fully automous and efficient 3d robotics hand/eye calibration. IEEE Trans. Robotics and Automation 5, 345–358 (1989)CrossRefGoogle Scholar
  3. 3.
    Tsai, R.: An efficient and accurate camera calibration technique for 3d machine vision. In: Proc. CVPR, pp. 364–374 (1986)Google Scholar
  4. 4.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proc.ICCV, pp. 666–673 (1999)Google Scholar
  5. 5.
    Sturm, P., Maybank, S.J.: On plane-based camera calibration: A general algorithm, singularities, applications. In: Proc. CVPR, pp. 432–437 (1999)Google Scholar
  6. 6.
    Zhang, Z.: Camera calibration with one-dimensional objects. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 161–174. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Maybank, S.J., Faugeras, O.D.: A theory of self-calibration of a moving camera. IJCV 8, 123–152 (1992)CrossRefGoogle Scholar
  8. 8.
    Hartley, R.I.: Estimation of relative camera positions for uncalibrated cameras. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 579–587. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  9. 9.
    Hartley, R.I.: An algorithm for self calibration from several views. In: Proc. CVPR, pp. 908–912 (1994)Google Scholar
  10. 10.
    Pollefeys, M., Gool, L., Osterlinck, A.: The modulus constraint: a new constraint for self-calibration. In: Proc. ICPR, pp. 31–42 (1996)Google Scholar
  11. 11.
    Pollefeys, M., Gool, L.: A stratified approach to metric self-calibration. In: Proc. CVPR, pp. 407–412 (1997)Google Scholar
  12. 12.
    Hartley, R.I., Agapite, L., Hayman, E., Reid, I.: Camera calibration and search for infinity. In: Proc. ICCV, pp. 510–517 (1999)Google Scholar
  13. 13.
    Triggs, B.: Auto-calibration and the absolute quadric. In: Proc. CVPR, pp. 609–614 (1997)Google Scholar
  14. 14.
    Caprile, B., Torre, V.: Using vanishing points for camera calibration. IJCV 4, 127–140 (1990)CrossRefGoogle Scholar
  15. 15.
    Chen, C., Yu, C., Hung, Y.: New calibration-free approach for augmented reality based on parameterized cuboid structure. In: Proc. ICCV, pp. 30–37 (1999)Google Scholar
  16. 16.
    Wilczkowiak, M., Sturm, P., Boyer, E.: Using geometric constraints through parallelepipeds for calbration and 3d modeling. IEEE-T PAMI 27, 194–207 (2005)CrossRefGoogle Scholar
  17. 17.
    Hartely, R.: Self-calibration of stationary cameras. IJCV 22, 5–23 (1997)CrossRefGoogle Scholar
  18. 18.
    Wolfe, W.J., Mathis, D.: The perspective view of three points. IEEE-T PAMI 13, 66–73 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • F. C. Wu
    • 1
  • F. Q. Duan
    • 1
  • Z. Y. Hu
    • 1
  1. 1.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingP.R. China

Personalised recommendations