Advertisement

A Physically-Motivated Deformable Model Based on Fluid Dynamics

  • Andrei C. Jalba
  • Jos B. T. M. Roerdink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3951)

Abstract

A novel deformable model for image segmentation and shape recovery is presented. The model is inspired by fluid dynamics and is based on a flooding simulation similar to the watershed paradigm. Unlike most watershed methods, our model has a continuous formulation, being described by two partial differential equations. In this model, different fluids, added by placing density (dye) sources manually or automatically, are attracted towards the contours of the objects of interest by an image force. In contrast to the watershed method, when different fluids meet they may mix. When the topographical relief of the image is flooded, the interfaces separating homogeneous fluid regions can be traced to yield the object contours. We demonstrate the flexibility and potential of our model in two experimental settings: shape recovery using manual initializations and automated segmentation.

Keywords

Image Segmentation Input Image Active Contour Object Boundary Noisy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Werman, M., Keren, D.: A Bayesian method for filtering parametric and nonparametric models to noisy data. IEEE Trans. Patt. Anal. Mach. Intell. 23(5), 528–534 (2001)CrossRefGoogle Scholar
  2. 2.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331 (1987)CrossRefGoogle Scholar
  3. 3.
    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on deformable models: Recovering 3D shape and nonrigid motion. Artificial Intelligence 36, 91–123 (1988)CrossRefMATHGoogle Scholar
  4. 4.
    McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1, 91–108 (1996)CrossRefGoogle Scholar
  5. 5.
    Suri, J., Liu, K., Singh, S., Laxminarayan, S., Zeng, X., Reden, L.: Shape recovery algorithms using level sets in 2-D/3-D medical imagery: A state of the art review. IEEE Trans. on Inf. Tech. in Biomed. 6, 8–28 (2002)CrossRefGoogle Scholar
  6. 6.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Anal. Machine Intell. 17, 158–175 (1995)CrossRefGoogle Scholar
  7. 7.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proc. 5th Int. Conf. Computer Vision, pp. 694–699 (1995)Google Scholar
  8. 8.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. ACM Comput. Graph. 21, 205–214 (1987)CrossRefGoogle Scholar
  9. 9.
    Christensen, G.E., Ribbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Processing 5, 1435–1447 (1996)CrossRefGoogle Scholar
  10. 10.
    Bro-Nielsen, M., Gramkow, C.: Fast fluid registration of medical images. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 267–276. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Jain, A.K., Zhong, Y., Dubuisson-Jolly, M.P.: Deformable template models: A review. Signal Processing 71, 109–129 (1998)CrossRefMATHGoogle Scholar
  12. 12.
    Meyer, F., Beucher, S.: Morphological segmentation. J. Visual Commun. and Image Repres. 1, 21–46 (1990)CrossRefGoogle Scholar
  13. 13.
    Roerdink, J.B.T.M., Meijster, A.: The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41(1-2), 187–228 (2000)MathSciNetMATHGoogle Scholar
  14. 14.
    Chorin, A.J., Marsden, J.E.: A mathematical introduction to fluid mechanics, 2nd edn. Texts in Applied Mathematics 4. Springer, Heidelberg (1990)CrossRefMATHGoogle Scholar
  15. 15.
    Stam, J.: Stable fluids. In: SIGGRAPH 1999, pp. 121–128. ACM Press/Addison-Wesley Publishing Co., New York (1999)Google Scholar
  16. 16.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Pattern Anal. Machine Intell. 7(3), 359–369 (1998)MathSciNetMATHGoogle Scholar
  17. 17.
    Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: CPM: A deformable model for shape recovery and segmentation based on charged particles. IEEE Trans. Pattern Anal. Machine Intell. 26, 1320–1335 (2004)CrossRefGoogle Scholar
  18. 18.
    Cohen, L.D.: On active contour methods and balloons. CVGIP: Image Understanding 53, 211–218 (1991)CrossRefMATHGoogle Scholar
  19. 19.
    Cohen, L., Cohen, I.: Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans. Pattern Anal. Machine Intell. 15(11), 1131–1147 (1993)CrossRefGoogle Scholar
  20. 20.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge Univ. Press, Cambridge (1988)MATHGoogle Scholar
  21. 21.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. In: SIGGRAPH 1987, pp. 1631–1169 (1987)Google Scholar
  22. 22.
    Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Processing 10, 266–277 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrei C. Jalba
    • 1
  • Jos B. T. M. Roerdink
    • 1
  1. 1.Institute for Mathematics and Computing ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations