Shape Analysis and Fuzzy Control for 3D Competitive Segmentation of Brain Structures with Level Sets

  • Cybèle Ciofolo
  • Christian Barillot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3951)


We propose a new method to segment 3D structures with competitive level sets driven by a shape model and fuzzy control. To this end, several contours evolve simultaneously toward previously defined targets. The main contribution of this paper is the original introduction of prior information provided by a shape model, which is used as an anatomical atlas, into a fuzzy decision system. The shape information is combined with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the borders of their respective targets. The shape model is produced with a principal component analysis, and the resulting mean shape and variations are used to estimate the target location and the fuzzy states corresponding to the distance between the current contour and the target. By combining shape analysis and fuzzy control, we take advantage of both approaches to improve the level set segmentation process with prior information. Experiments are shown for the 3D segmentation of deep brain structures from MRI and a quantitative evaluation is performed on a 18 volumes dataset.


Gaussian Mixture Model Fuzzy Control Fuzzy Controller Shape Model Shape Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature dependant speed: algorithms based on Hamilton-Jacobi formulation. Jour. Comp. Phys. 79, 12–49 (1988)CrossRefMATHGoogle Scholar
  2. 2.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. Jour. Comp. Vis. 22, 61–79 (1997)CrossRefMATHGoogle Scholar
  3. 3.
    Malladi, R., Sethian, J.A., Vemuri, C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Patt. Anal. Mach. Intell. 17, 158–175 (1995)CrossRefGoogle Scholar
  4. 4.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. Jour. Comp. Vis. 50 (2002)Google Scholar
  5. 5.
    Paragios, N.: A variational approach for the segmentation of the left ventricle in cardiac image analysis. Int. Jour. Comp. Vis. 50, 345–362 (2002)CrossRefMATHGoogle Scholar
  6. 6.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. Patt. Anal. Mach. Intell. 22, 266–280 (2000)CrossRefGoogle Scholar
  7. 7.
    Paragios, N., Deriche, R.: Coupled geodesic active regions for image segmentation: A level set approach. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 224–240. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Comp. Vis. Im. Underst. 61, 38–59 (1995)CrossRefGoogle Scholar
  9. 9.
    Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Tsai, A., et al.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imag. 22, 137–154 (2003)CrossRefGoogle Scholar
  11. 11.
    Yang, J., Duncan, J.S.: 3D image segmentation of deformable objects with joint shape-intensity prior models using level sets. Med. Image Anal. 8, 285–294 (2004)CrossRefGoogle Scholar
  12. 12.
    Xu, D.L., et al.: Reconstruction of the human cerebral cortex from magnetic resonance images. IEEE Trans. Med. Imag. 18, 467–480 (1999)CrossRefGoogle Scholar
  13. 13.
    Colliot, O., Camara, O., Dewynter, R., Bloch, I.: Description of brain internal structures by means of spatial relations for MR image segmentation. In: Int. Soc. Opt. Eng. SPIE Med. Imag., pp. 444–455 (2004)Google Scholar
  14. 14.
    Ciofolo, C., Barillot, C.: Brain segmentation with competitive level sets and fuzzy control. In: Int. Conf. Inform. Proc. Med. Imag. (IPMI), pp. 333–344 (2005)Google Scholar
  15. 15.
    Baillard, C., Hellier, P., Barillot, C.: Segmentation of brain 3D MR images using level sets and dense registration. Med. Image Anal. 5, 185–194 (2001)CrossRefGoogle Scholar
  16. 16.
    Celeux, G., et al.: L’algorithme SEM: un algorithme d’apprentissage probabiliste pour la reconnaissance de mélanges de densités. Rev. Stat. App. 34, 35–51 (1986)MATHGoogle Scholar
  17. 17.
    Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. Jour. Comp. Phys. 127, 179–195 (1996)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Samson, C., Blanc-Féraud, L., Aubert, G., Zerubia, J.: A level set model for image classification. Int. Jour. Comp. Vis. 40, 187–197 (2000)CrossRefMATHGoogle Scholar
  19. 19.
    Borgefors, G.: Distance transformations in digital images. Comp. Vis. Graph. Im. Proc. 34, 344–371 (1986)CrossRefGoogle Scholar
  20. 20.
    Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imag. 13, 716–724 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Cybèle Ciofolo
    • 1
  • Christian Barillot
    • 1
  1. 1.IRISA / CNRS, Team VisAGeSRennesFrance

Personalised recommendations