Top-Points as Interest Points for Image Matching

  • B. Platel
  • E. Balmachnova
  • L. M. J. Florack
  • B. M. ter Haar Romeny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3951)


We consider the use of top-points for object retrieval. These points are based on scale-space and catastrophe theory, and are invariant under gray value scaling and offset as well as scale-Euclidean transformations. The differential properties and noise characteristics of these points are mathematically well understood. It is possible to retrieve the exact location of a top-point from any coarse estimation through a closed-form vector equation which only depends on local derivatives in the estimated point. All these properties make top-points highly suitable as anchor points for invariant matching schemes. By means of a set of repeatability experiments and receiver-operator-curves we demonstrate the performance of top-points and differential invariant features as image descriptors.


Feature Vector Receiver Operating Characteristic Curve Critical Path Interest Point Query Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. 4th Alvey Vision Conf., pp. 189–192 (1988)Google Scholar
  2. 2.
    Lindeberg, T.: Scale-space theory: A basic tool for analysing structures at different scales. J. of Applied Statistics 21(2), 224–270 (1994)Google Scholar
  3. 3.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)CrossRefGoogle Scholar
  5. 5.
    Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. Int. J. Comput. Vision 37(2), 151–172 (2000)CrossRefMATHGoogle Scholar
  6. 6.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  7. 7.
    Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Scale and the differential structure of images. Image and Vision Computing 10(6), 376–388 (1992)CrossRefMATHGoogle Scholar
  8. 8.
    Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Cartesian differential invariants in scale-space. Journal of Mathematical Imaging and Vision 3(4), 327–348 (1993)CrossRefGoogle Scholar
  9. 9.
    Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Damon, J.: Local Morse theory for solutions to the heat equation and Gaussian blurring. Journal of Differential Equations 115(2), 368–401 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Florack, L., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12(1), 65–79 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Johansen, P., Skelboe, S., Grue, K., Andersen, J.D.: Representing signals by their top points in scale-space. In: Proceedings of the 8th International Conference on Pattern Recognition, Paris, France, October 1986, pp. 215–217. IEEE Computer Society Press, Los Alamitos (1986)Google Scholar
  13. 13.
    Blom, J., ter Haar Romeny, B.M., Bel, A., Koenderink, J.J.: Spatial derivatives and the propagation of noise in Gaussian scale-space. Journal of Visual Communication and Image Representation 4(1), 1–13 (1993)CrossRefGoogle Scholar
  14. 14.
    Balmachnova, E., Florack, L., Platel, B., Kanters, F., ter Haar Romeny, B.M.: Stability of top-points in scale space. In: Proceedings of the 5th International Conference on Scale Space Methods in Computer Vision, Germany, April 2005, pp. 62–72 (2005)Google Scholar
  15. 15.
    Platel, B., Fatih Demirci, M., Shokoufandeh, A., Florack, L., Kanters, F., Dickinson, S.: Discrete representation of top points via scale space tessellation. In: Proceedings of the 5th International Conference on Scale Space Methods in Computer Vision, Germany (April 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • B. Platel
    • 1
  • E. Balmachnova
    • 1
  • L. M. J. Florack
    • 1
  • B. M. ter Haar Romeny
    • 1
  1. 1.Technische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations