He, X., Zemel, R.S., Carreira-Perpiñán, M.A.: Multiscale conditional random fields for image labeling. In: Proc. of IEEE CVPR (2004)
Google Scholar
Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: CVPR 2003, vol. II, pp. 264–271 (2003)
Google Scholar
Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondences. In: CVPR (2005)
Google Scholar
Winn, J., Criminisi, A., Minka, T.: Categorization by learned universal visual dictionary. In: Int. Conf. of Computer Vision (2005)
Google Scholar
Kumar, S., Herbert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: NIPS (2004)
Google Scholar
Borenstein, E., Sharon, E., Ullman, S.: Combining top-down and bottom-up segmentation. In: Proceedings IEEE workshop on Perceptual Organization in Computer Vision, CVPR (2004)
Google Scholar
Winn, J., Jojic, N.: LOCUS: Learning Object Classes with Unsupervised Segmentation. In: Proc. of IEEE ICCV (2005)
Google Scholar
Kumar, P., Torr, P., Zisserman, A.: Obj cut. In: Proc. of IEEE CVPR (2005)
Google Scholar
Leibe, B., Schiele, B.: Interleaved object categorization and segmentation. In: BMVC 2003, vol. II, pp. 264–271 (2003)
Google Scholar
Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)
CrossRef
Google Scholar
Tu, Z., Chen, X., Yuille, A.L., Zhu, S.: Image parsing: Unifying segmentation, detection, and recognition. In: CVPR (2003)
Google Scholar
Konishi, S., Yuille, A.L.: Statistical cues for domain specific image segmentation with performance analysis. In: CVPR (2000)
Google Scholar
Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: ICML (2001)
Google Scholar
Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: Proc. of IEEE ICCV (2001)
Google Scholar
Rother, C., Kolmogorov, V., Blake, A.: Interactive foreground extraction using iterated graph cuts. In: ACM Transactions on Graphics, SIGGRAPH 2004 (2004)
Google Scholar
Sutton, C., McCallum, A.: Piecewise training of undirected models. In: 21st Conference on Uncertainty in Artificial Intelligence (2005)
Google Scholar
Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. IJCV 43, 29–44 (2001)
CrossRef
MATH
Google Scholar
Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. International Journal of Computer Vision: Special Issue on Texture Analysis and Synthesis 62, 61–81 (2005)
CrossRef
Google Scholar
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR 2001, vol. I, pp. 511–518 (2001)
Google Scholar
Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. PAMI 24, 509–522 (2002)
CrossRef
Google Scholar
Torralba, A., Murphy, K., Freeman, W.: Sharing features: efficient boosting procedures for multiclass object detection. In: Proc. of IEEE CVPR, pp. 762–769 (2004)
Google Scholar
Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Technical report, Dept. of Statistics, Stanford University (1998)
Google Scholar
Baluja, S., Rowley, H.A.: Boosting sex identification performance, pp. 1508–1513. AAAI Press, Menlo Park (2005)
Google Scholar
Kumar, S., Hebert, M.: A hierarchical field framework for unified context-based classification. In: ICCV 2005, vol. II, pp. 1284–1291 (2005)
Google Scholar