Advertisement

Euclidean Structure from N ≥ 2 Parallel Circles: Theory and Algorithms

  • Pierre Gurdjos
  • Peter Sturm
  • Yihong Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3951)

Abstract

Our problem is that of recovering, in one view, the 2D Euclidean structure, induced by the projections of N parallel circles. This structure is a prerequisite for camera calibration and pose computation. Until now, no general method has been described for N > 2. The main contribution of this work is to state the problem in terms of a system of linear equations to solve. We give a closed-form solution as well as bundle adjustment-like refinements, increasing the technical applicability and numerical stability. Our theoretical approach generalizes and extends all those described in existing works for N = 2 in several respects, as we can treat simultaneously pairs of orthogonal lines and pairs of circles within a unified framework. The proposed algorithm may be easily implemented, using well-known numerical algorithms. Its performance is illustrated by simulations and experiments with real images.

Keywords

Camera Calibration Absolute Signature Euclidean Structure Orthogonal Line Radical Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Davis, L.S.: Camera calibration using spheres: A semi-definite programming approach. In: ICCV, vol. 2, pp. 782–791 (2003)Google Scholar
  2. 2.
    Barreto, J.: General Central Projection Systems: Modeling, Calibration and Visual Servoing. Ph.D. Thesis. University of Coimbra (2003)Google Scholar
  3. 3.
    Chen, Q.-a., Wu, H., Wada, T.: Camera Calibration with Two Arbitrary Coplanar Circles. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: A New Constrained Parameter Estimator for Computer Vision Applications. IVC 22(2), 85–91 (2004)CrossRefGoogle Scholar
  5. 5.
    Collidge, J.-L.: A Treatise on the Circle and the Sphere. Clarendon Press, Oxford (1916)Google Scholar
  6. 6.
    Columbo, C., Del Bimbo, A., Pernici, F.: Metric 3D Reconstruction and Texture Acquisition of Surfaces of Revolution from a Single Uncalibrated View. PAMI 27(1), 99–114 (2005)CrossRefGoogle Scholar
  7. 7.
    Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct Least Square Fitting of Ellipses. PAMI 21(5), 476–480 (1999)CrossRefGoogle Scholar
  8. 8.
    Gander, W., Golub, G.H., Strebel, R.: Fitting of Circles and Ellipsess. BIT 34, 558–578 (1994)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press (1996)Google Scholar
  10. 10.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  11. 11.
    Jiang, G., Tsui, H.-t., Quan, L., Zisserman, A.: Single Axis Geometry by Fitting Conics. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 537–550. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Kanatani, K., Liu, W.: 3D Interpretation of Conics and Orthogonality. CVIU 58(3), 286–301 (1993)Google Scholar
  13. 13.
    Kim, J.-S., Gurdjos, P., Kweon, I.-S.: Geometric and Algebraic Constraints of Projected Concentric Circles and Their Applications to Camera Calibration. PAMI 27(4), 637–642 (2005)CrossRefGoogle Scholar
  14. 14.
    Liebowitz, D.: Camera Calibration and Reconstruction of Geometry from Images. Ph.D. Thesis University of Oxford. Trinity Term (2001)Google Scholar
  15. 15.
    Ma, S.D.: Conics-based Stereo, Motion estimation, and Pose Determination. IJCV 10(1), 7–25 (1993)CrossRefGoogle Scholar
  16. 16.
    Mundy, J.L., Zisserman, A. (eds.): Geometric Invariance in Computer Vision. MIT Press, Cambridge (1992)Google Scholar
  17. 17.
    Quan, L.: Conic Reconstruction and Correspondence from Two Views. PAMI 18(2), 151–160 (1996)CrossRefGoogle Scholar
  18. 18.
    Semple, J., Kneebone, G.: Algebraic Projective Geometry. Oxford Classic Series (1952) (reprinted, 1998)Google Scholar
  19. 19.
    Sturm, P., Quan, L.: Affine Stereo Calibration. Technical Report LIFIA-29, LIFIA-IMAG (June 1995)Google Scholar
  20. 20.
    Sturm, P., Maybank, S.: On Plane-Based Camera Calibration: a General Algorithm, Singularities, Applications. In: CVPR, vol. 1, pp. 1432–1437 (1999)Google Scholar
  21. 21.
    Triggs, B.: Autocalibration and the Absolute Quadric. In: CVPR, pp. 609–614 (1997)Google Scholar
  22. 22.
    Triggs, B.: Autocalibration from planar scenes. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 89–105. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Wu, Y., Li, X., Wu, F., Wu, Z.: Coplanar circles, Quasi-Affine Invariance and Calibration. In: Image and Vision Computing (to appear, 2004)Google Scholar
  24. 24.
    Zhang, Z.: A Flexible New Technique for Camera Calibration. PAMI 22(11), 1330–1344 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Pierre Gurdjos
    • 1
  • Peter Sturm
    • 2
  • Yihong Wu
    • 3
  1. 1.IRIT-TCI, UPSToulouseFrance
  2. 2.PERCEPTION, INRIA Rhône-AlpesMontbonnotFrance
  3. 3.NLPR-IAChinese Academy of SciencesBeijingChina

Personalised recommendations