Geometry and Kinematics with Uncertain Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3951)


In Computer Vision applications, one usually has to work with uncertain data. It is therefore important to be able to deal with uncertain geometry and uncertain transformations in a uniform way. The Geometric Algebra of conformal space offers a unifying framework to treat not only geometric entities like points, lines, planes, circles and spheres, but also transformations like reflection, inversion, rotation and translation. In this text we show how the uncertainty of all elements of the Geometric Algebra of conformal space can be appropriately described by covariance matrices. In particular, it will be shown that it is advantageous to represent uncertain transformations in Geometric Algebra as compared to matrices. Other important results are a novel pose estimation approach, a uniform framework for geometric entity fitting and triangulation, the testing of uncertain tangentiality relations and the treatment of catadioptric cameras with parabolic mirrors within this framework. This extends previous work by Förstner and Heuel from points, lines and planes to non-linear geometric entities and transformations, while keeping the linearity of the estimation method. We give a theoretical description of our approach and show exemplary applications.


Covariance Matrix Conformal Space Uncertain Data Geometric Algebra Jacobi Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Förstner, W., Brunn, A., Heuel, S.: Statistically testing uncertain geometric relations. In: Sommer, G., Krüger, N., Perwass, C. (eds.) Mustererkennung 2000. Informatik Aktuell, pp. 17–26. Springer, Berlin (2000)CrossRefGoogle Scholar
  2. 2.
    Heuel, S.: Uncertain Projective Geometry. LNCS, vol. 3008. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  3. 3.
    Perwass, C., Sommer, G.: Numerical evaluation of versors with Clifford algebra. In: Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 341–349. Birkhäuser, Basel (2002)CrossRefGoogle Scholar
  4. 4.
    Perwass, C., Förstner, W.: Uncertain geometry with circles, spheres and conics. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties from Incomplete Data. Computational Imaging and Vision, vol. 31, pp. 23–41. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Rosenhahn, B., Sommer, G.: Pose estimation in conformal geometric algebra, part I: The stratification of mathematical spaces. Journal of Mathematical Imaging and Vision 22, 27–48 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Perwass, C., Gebken, C., Sommer, G.: Estimation of geometric entities and operators from uncertain data. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 459–467. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Perwass, C., Hildenbrand, D.: Aspects of geometric algebra in Euclidean, projective and conformal space. Technical Report Number 0310, CAU Kiel, Institut für Informatik (2003)Google Scholar
  8. 8.
    Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Reidel, Dordrecht (1984)CrossRefzbMATHGoogle Scholar
  9. 9.
    Koch, K.R.: Parameter Estimation and Hypothesis Testing in Linear Models. Springer, Heidelberg (1997)Google Scholar
  10. 10.
    Mikhail, E., Ackermann, F.: Observations and Least Squares. University Press of America, Lanham, MD20706, USA (1976)Google Scholar
  11. 11.
    Li, H., Hestenes, D., Rockwood, A.: Generalized Homogeneous Coordinates for Computational Geometry. In: Geometric Computing with Clifford Algebras, pp. 27–59. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Clifford, W.K.: Preliminary sketch of bi-quaternions. In: Proceedings of the London Mathematical Society, vol. 4, pp. 381–395 (1873)Google Scholar
  13. 13.
    Daniilidis, K.: Using the Algebra of Dual Quaternions for Motion Alignment. In: Geometric Computing with Clifford Algebras, pp. 489–500. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Gebken, C., Perwass, C., Buchholz, S., Sommer, G.: A robust geometrical solution to pose estimation using geometric algebra. In: ECCV 2006 (submitted, 2006)Google Scholar
  15. 15.
    Perwass, C.: Applications of Geometric Algebra in Computer Vision. PhD thesis, Cambridge University (2000)Google Scholar
  16. 16.
    Geyer, C., Daniilidis, K.: Catadioptric projective geometry. International Journal of Computer Vision, 223–243 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Institut für Informatik, CAU KielKielGermany

Personalised recommendations