The Electromagnetism Meta-heuristic Applied to the Resource-Constrained Project Scheduling Problem

  • Dieter Debels
  • Mario Vanhoucke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3871)


Recently, an electromagnetism (EM) heuristic has been introduced by Birbil and Fang (2003) to solve unconstrained optimization problems. In this paper, we extend the EM methodology to combinatorial optimization problems and illustrate its effectiveness on the well-known resource-constrained project scheduling problem (RCPSP). We present computational experiments on a standard benchmark dataset, compare the results of the different modifications on the original EM framework with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results for challenging instances of the problem under study. We also give directions for future research in order to further explore the potential of this new technique.


Project Schedule Unconstrained Optimization Problem Project Schedule Problem Naval Research Logistics Constrain Project Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alcaraz, J., Maroto, C.: A robust genetic algorithm for resource allocation in project scheduling. Annals of Operations Research 102, 83–109 (2001)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alcaraz, J., Maroto, C., Ruiz, R.: Improving the performance of genetic algorithms for the RCOS problems. In: Proceedings of the Ninth International Workshop on Project Management and Scheduling, Nancy, pp. 40–43 (2004)Google Scholar
  3. 3.
    Baar, T., Brucker, P., Knust, S.: Tabu-search algorithms and lower bounds for the resource-constrained project scheduling problem, Meta-heuristics: Advances and trends in local search paradigms for optimization, pp. 1–8 (1998)Google Scholar
  4. 4.
    Birbil, S.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. Journal of Global Optimization 25, 263–282 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bouleimen, K., Lecocq, H.: A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research 149, 268–281 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Coelho, J., Tavares, L.: Comparative analysis of meta-heuricstics for the resource constrained project scheduling problem, Technical report, Department of Civil Engineering, Instituto Superior Tecnico, Portugal (2003)Google Scholar
  7. 7.
    Debels, D., De Reyck, B., Leus, R., Vanhoucke, M.: A scatter-search meta-heuristic for the resource-constrained project scheduling problem, European Journal of Operational Research, forthcomingGoogle Scholar
  8. 8.
    Hartmann, S.: A competitive genetic algorithm for the resource-constrained project scheduling. Naval Research Logistics 45, 733–750 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hartmann, S.: A self-adapting genetic algorithm for project scheduling under resource constraints. Naval Research Logistics 49, 433–448 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research 127, 394–407 (2000)CrossRefMATHGoogle Scholar
  11. 11.
    Klein, R.: Project scheduling with time-varying resource constraints. International Journal of Production Research 38(16), 3937–3952 (2000)CrossRefMATHGoogle Scholar
  12. 12.
    Kochetov, Y., Stolyar, A.: Evolutionary local search with variable neighbourhood for the resource constrained project scheduling problem. In: Proceedings of the 3rd International Workshop of Computer Science and Information Technologies (2003)Google Scholar
  13. 13.
    Kolisch, R.: Project scheduling under resource constraints - Efficient heuristics for several problem classes, Physica (1995)Google Scholar
  14. 14.
    Kolisch, R.: Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. European Journal of Operational Research 43, 23–40 (1996)MATHGoogle Scholar
  15. 15.
    Kolisch, R.: Efficient priority rules for the resource-constrained project scheduling problem. Journal of Operations Management 14, 179–192 (1996)CrossRefGoogle Scholar
  16. 16.
    Kolisch, R., Drexl, A.: Adaptive search for solving hard project scheduling problems. Naval Research Logistics 43, 23–40 (1996)CrossRefMATHGoogle Scholar
  17. 17.
    Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained project scheduling problem: classification and computational analysis. In: Weglarz, J. (ed.) Project Scheduling - Recent Models, Algorithms and Applications, pp. 147–178. Kluwer Academic Publishers, Boston (1999)Google Scholar
  18. 18.
    Kolisch, R., Hartmann, S.: Experimental investigation of Heuristics for resource-constrained project scheduling: an update, working paper, Technical University of Munich (2004)Google Scholar
  19. 19.
    Kolisch, R., Sprecher, A.: PSPLIB - A project scheduling library. European Journal of Operational Research 96, 205–216 (1997)CrossRefMATHGoogle Scholar
  20. 20.
    Leon, V.J., Ramamoorthy, B.: Strength and adaptability of problem-space based neighbourhoods for resource-constrained scheduling. OR Spektrum 17, 173–182 (1995)CrossRefMATHGoogle Scholar
  21. 21.
    Li, K.Y., Willis, R.J.: An iterative scheduling technique for resource-constrained project scheduling. European Journal of Operational Research 56, 370–379 (1992)CrossRefMATHGoogle Scholar
  22. 22.
    Merkle, D., Middendorf, M., Schmeck, H.: Ant colony optimization for resource constrained project scheduling. IEEE Transaction on Evolutionary Computation 6(4), 333–346 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resource constrained project scheduling problem (RCPSP). In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Meta-heuristics, pp. 557–588. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  24. 24.
    Schirmer, A.: Case-based reasoning and improved adaptive search for project scheduling. Naval Research Logistics 47, 201–222 (2000)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sprecher, A.: Scheduling resource-constrained projects competitively at modest resource requirements. Management Science 46, 710–723 (2000)CrossRefMATHGoogle Scholar
  26. 26.
    Tormos, P., Lova, A.: A competitive heuristic solution technique for resource-constrained project scheduling. Annals of Operations Research 102, 65–81 (2001)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Tormos, P., Lova, A.: An efficient multi-pass heuristic for project scheduling with constrained resources. International Journal of Production Research 41, 1071–1086 (2003)CrossRefMATHGoogle Scholar
  28. 28.
    Tormos, P., and Lova, A.: Integrating heuristics for resource constrained project scheduling: One step forward, Technical report, Department of Statistics and Operations Research, Universidad Politécnica de Valencia (2003)Google Scholar
  29. 29.
    Valls, V., Quintanilla, S., Ballestin, F.: Resource-constrained project scheduling: a critical activity reordering heuristic. European Journal of Operational Research 149, 282–301 (2003)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Valls, V., Ballestin, F., Quintanilla, S.: A population-based approach to the resource-constrained project scheduling problem. Annals of Operations Research 131, 305–324 (2004)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Valls, V., Ballestin, F., Quintanilla, S.: A hybrid genetic algorithm for the Resource-constrained project scheduling problem with the peak crossover operator. Eighth International Workshop on Project Management and Scheduling, 368–371 (2002)Google Scholar
  32. 32.
    Valls, V., Ballestin, F.: Quintanilla, S.: Justification and RCPSP: A technique that pays, European Journal of Operational Research (forthcoming)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dieter Debels
    • 1
  • Mario Vanhoucke
    • 1
    • 2
  1. 1.Faculty of Economics and Business AdministrationGhent UniversityGhentBelgium
  2. 2.Vlerick Leuven Gent Management School, Operations & Technology Management CentreGhentBelgium

Personalised recommendations