Advertisement

Size Control with Maximum Homologous Crossover

  • Michael Defoin Platel
  • Manuel Clergue
  • Philippe Collard
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3871)

Abstract

Most of the Evolutionary Algorithms handling variable-sized structures, like Genetic Programming, tend to produce too long solutions and the recombination operator used is often considered to be partly responsible of this phenomenon, called bloat. The Maximum Homologous Crossover (MHC) preserves similar structures from parents by aligning them according to their homology. This operator has already demonstrated interesting abilities in bloat reduction but also some weaknesses in the exploration of the size of programs during evolution. In this paper, we show that MHC do not induce any specific biases in the distribution of sizes, allowing size control during evolution. Two different methods for size control based on MHC are presented and tested on a symbolic regression problem. Results show that an accurate control of the size is possible while improving performances of MHC.

Keywords

Mutation Rate Genetic Programming Size Control Edit Distance Average Fitness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances in Genetic Programming, MIT Press, Cambridge (1994)Google Scholar
  2. 2.
    Brameier, M., Bhanzhaf, W.: Explicit control of diversity and effective variation distance in linear genetic programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 37–49. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bruce, W.S.: The lawnmower problem revisited: Stack-based genetic programming and automatically defined functions. In: Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, CA, USA, pp. 13–16. Morgan Kaufmann, San Francisco (1997)Google Scholar
  4. 4.
    Crawford-Marks, R., Spector, L.: Size control via size fair genetic operators in the PushGP genetic programming system. In: GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, 9-13 July 2002, pp. 733–739. Morgan Kaufmann, San Francisco (2002)Google Scholar
  5. 5.
    de Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity using multi-objective methods. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 11–18. Morgan Kaufmann, San Francisco (2001)Google Scholar
  6. 6.
    Defoin Platel, M., Clergue, M., Collard, P.: Homolgy gives size control in genetic porgramming. In: Proceedings of the 2003 Congress on Evolutionary Computation CEC 2003, pp. 281–288. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  7. 7.
    Defoin Platel, M., Clergue, M., Collard, P.: Maximum homologous crossover for linear genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 194–203. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Langdon, W.B., Poli, R.: Fitness causes bloat. In: Second On-line World Conference on Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Luke, S.: Code growth is not caused by introns. In: Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference, Las Vegas, Nevada, USA, vol. 8, pp. 228–235 (2000)Google Scholar
  10. 10.
    Luke, S.: Modification point depth and genome growth in genetic programming. Evol. Comput. 11(1), 67–106 (2003)CrossRefGoogle Scholar
  11. 11.
    Perkis, T.: Stack-based genetic programming. In: Proceedings of the 1994 IEEE World Congress on Computational Intelligence, Orlando, Florida, USA, vol. 1, pp. 148–153. IEEE Press, Los Alamitos (1994)Google Scholar
  12. 12.
    Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 204–214. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Poli, R., Langdon, W.B.: Genetic programming with one-point crossover. In: Soft Computing in Engineering Design and Manufacturing, June 23-27, 1997, pp. 180–189. Springer, London (1997)Google Scholar
  14. 14.
    Poli, R., McPhee, N.F.: Exact schema theorems for GP with one-point and standard crossover operating on linear structures and their application to the study of the evolution of size. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 126–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Rowe, J.E., McPhee, N.F.: The effects of crossover and mutation operators on variable length linear structures. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco, California, USA, July 7-11, 2001, pp. 535–542. Morgan Kaufmann, San Francisco (2001)Google Scholar
  16. 16.
    Soule, T., Foster, J.A.: An analysis of the causes of code growth in genetic programming. Genetic Programming and Evolvable Machines 3(1), 283–309 (2002)CrossRefMATHGoogle Scholar
  17. 17.
    Keller, R.E., Banzhaf, W., Nordin, P., Francone, F.D.: Genetic Programming - An Introduction. Morgan Kaufmann, San Francisco (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Defoin Platel
    • 1
  • Manuel Clergue
    • 1
  • Philippe Collard
    • 1
  1. 1.Laboratoire I3SCNRS-Université de Nice Sophia AntipolisFrance

Personalised recommendations