Skip to main content

Evolutionary Design of a DDPD Model of Ligation

  • Conference paper
Artificial Evolution (EA 2005)

Abstract

Ligation is a form of chemical self-assembly that involves dynamic formation of strong covalent bonds in the presence of weak associative forces. We study an extremely simple form of ligation by means of a dissipative particle dynamics (DPD) model extended to include the dynamic making and breaking of strong bonds, which we term dynamically bonding dissipative particle dynamics (DDPD). Then we use a chemical genetic algorithm (CGA) to optimize the model’s parameters to achieve a limited form of ligation of trimers—a proof of principle for the evolutionary design of self-assembling chemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tuerk, C., Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990)

    Article  Google Scholar 

  2. Ellington, A.D., Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990)

    Article  Google Scholar 

  3. Irvine, D., Tuerk, C., Gold, L.: SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis. Journal of Molecular Biology 222, 739–761 (1991)

    Article  Google Scholar 

  4. Chapman, K.B., Szostak, J.W.: In vitro selection of catalytic RNAs. Current Opinions in Structural Biology 4, 618–622 (1994)

    Article  Google Scholar 

  5. Rohatgi, R., Bartel, D.P., Szostak, J.W.: Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3’-5’ phosphodiester bonds. Journal of the American Chemical Society 118, 3340–3344 (1996)

    Article  Google Scholar 

  6. Wright, M., Joyce, G.: Continuous in vitro evolution of catalytic function. Science 276, 614–617 (1997)

    Article  Google Scholar 

  7. Joyce, G.: Directed evolution of nucleic acid enzymes. Annual Review of Biochemistry 73, 791–836 (2004)

    Article  Google Scholar 

  8. Rasmussen, S., Chen, L., Deamer, D., Krakauer, D., Packard, N., Stadler, P., Bedau, M.: Transitions from nonliving to living matter. Science 303, 963–965 (2004)

    Article  Google Scholar 

  9. Joyce, G.F., Inoue, T., Orgel, L.E.: Non-enzymatic template-directed synthesis on RNA random copolymers. Poly(C, U) templates 176, 279–306 (1984)

    Google Scholar 

  10. Acevedo, O.L., Orgel, L.E.: Non-enzymatic transcription of an oligodeoxynucleotide 14 residues long. Journal of Molecular Biology 197, 187–193 (1987)

    Article  Google Scholar 

  11. Zielinski, W.S., Orgel, L.E.: Oligoaminonucleoside phosphoramidates. Oligomerization of dimers of 3’-amino-3’-deoxy-nucleotides (GC and CG) in aqueous solution. Nucleic Acids Research 15, 1699–1715 (1987)

    Article  Google Scholar 

  12. Joyce, G.F., Orgel, L.E.: Non-enzymatic template-directed synthesis on RNA random copolymers. Poly(C,A) templates. Journal of Molecular Biology 202, 677–681 (1988)

    Article  Google Scholar 

  13. Hill Jr., A.R., Orgel, L.E., Wu, T.: The limits of template-directed synthesis with nucleoside-5’-phosphoro(2-methyl)imidazolides. Origins of Life and Evolution of the Biosphere 23, 285–290 (1993)

    Article  Google Scholar 

  14. Liu, R., Orgel, L.E.: Enzymatic synthesis of polymers containing nicotinamide mononucleotide. Nucleic Acids Research 23, 3742–3749 (1995)

    Article  Google Scholar 

  15. Bohler, C., Nielsen, P.E., Orgel, L.E.: Template switching between PNA and RNA oligonucleotides. Nature 376, 578–581 (1995)

    Article  Google Scholar 

  16. Hoogerbrugge, P., Koelman, J.: Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhysics Letters 19, 155–160 (1992)

    Article  Google Scholar 

  17. Groot, R., Warren, P.: Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulations. Journal of Chemical Physics 107, 4423–4435 (1997)

    Article  Google Scholar 

  18. Marsh, C.: Theoretical aspects of dissipative particle dynamics. Ph.D. Thesis, University of Oxford (1998)

    Google Scholar 

  19. Shillcock, J., Lipowsky, R.: Equilibrium structure and lateral stress distribution from dissipative particle dynamics simulations. Journal of Chemical Physics 117, 5048–5061 (2002)

    Article  Google Scholar 

  20. Vattulainen, I., Karttunen, M., Besold, G., Polson, J.: Integration schemes for dissipative particle dynamics simulations: From softly interacting systems towards hybrid models. Journal of Chemical Physics 116, 3967–3979 (2002)

    Article  Google Scholar 

  21. Trofimov, S., Nies, E., Michels, M.: Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. Journal of Chemical Physics 117, 9383–9394 (2002)

    Article  Google Scholar 

  22. Jury, S., Bladon, P., Cates, M., Krishna, S., Hagen, M., Ruddock, N., Warren, P.: Simulation of amphiphilic mesophases using dissipative particle dynamics. Physical Chemistry and Chemical Physics 1, 2051–2056 (1999)

    Article  Google Scholar 

  23. Yamamoto, S., Maruyama, Y., Hyodo, S.: Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. Journal of Chemical Physics 116, 5842–5849 (2002)

    Article  Google Scholar 

  24. Kranenburg, M., Venturoli, M., Smit, B.: Phase behavior and induced interdigitation in bilayers studied with dissipative particle dynamics. Journal of Physical Chemistry 107, 11491–11501 (2003)

    Article  Google Scholar 

  25. Yamamoto, S., Hyodo, S.: Budding and fission dynamics of two-component vesicles. Journal of Chemical Physics 118, 7937–7943 (2003)

    Article  Google Scholar 

  26. von Kiedrowski, G.: A self-replicating hexadeoxynucleotide. Angewandte Chemie International Edition English 25, 932–935 (1986)

    Article  Google Scholar 

  27. Tjivikua, T., Ballester, P., Rebek, J.J.: A self-replicating system. Journal of the American Chemical Society 112, 1249–1250 (1990)

    Article  Google Scholar 

  28. Suzuki, H., Sawai, H.: Chemical genetic algorithms — Coevolution between codes and code translation. In: Standish, R.K., Bedau, M.A., Abbass, H.A. (eds.) Proceedings of the Eighth International Conference on Artificial Life (Artificial Life VIII), pp. 164–172 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bedau, M.A. et al. (2006). Evolutionary Design of a DDPD Model of Ligation. In: Talbi, EG., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2005. Lecture Notes in Computer Science, vol 3871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11740698_18

Download citation

  • DOI: https://doi.org/10.1007/11740698_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33589-4

  • Online ISBN: 978-3-540-33590-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics