Identifying the Multiple Contexts of a Situation

  • Aviv Segev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3946)

Abstract

The paper presents a contexts recognition algorithm that uses the Internet as a knowledge base to extract the multiple contexts of a given situation, based on the streaming in text format of information representing the situation. Context is represented here as any descriptor most commonly selected by a set of subjects to describe a given situation. Multiple contexts are matched with the situation. The algorithm yields consistently good results and the comparison of the algorithm results with the results of people showed that there was no significant difference in the determination of context. The algorithm is currently being implemented in different fields and in multilingual environments.

Keywords

Matching context Context recognition Metadata Text analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    In: AAAI 1999, Workshop on Reasoning in Context for AI Applications (July 19, 1999)Google Scholar
  2. 2.
    Assadi, H.: Construction of a regional ontology from text and its use within a documentary system. In: Proceedings of the International Conference on Formal Ontology and Information Systems, FOIS 1998 (1998)Google Scholar
  3. 3.
    Baker, C.F., Fillmore, C.F., Lowe, J.B.: The berkeley framenet project. In: Proceedings of COLING-ACL, pp. 86–90 (1998)Google Scholar
  4. 4.
    Bauer, T., Leake, D.: Wordsieve: A method for real-time context extraction. In: Akman, V., Bouquet, P., Thomason, R.H., Young, R.A. (eds.) CONTEXT 2001. LNCS (LNAI), vol. 2116, pp. 30–41. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Briscoe, T., Carroll, J.: Automatic extraction of subcategorization from corpora. In: Proceedings of the Fifth Conference on Applied Natural Language Processing (1997)Google Scholar
  6. 6.
    Dumais, S., Chen, H.: Hierarchical classification of web content. In: Proceedings of SIGIR, 23rd ACM International Conference on Research and Development in Information Retrieval, pp. 256–263 (2000)Google Scholar
  7. 7.
    Erman, L., Hayes-Roth, F., Lesser, V., Reddy, D.R.: The Hearsay II speech understanding system: Integrating knowledge to resolve uncertainty. Computing Surveys 12(2), 213–253 (1980)CrossRefGoogle Scholar
  8. 8.
    Gal, A., Modica, G., Jamil, H.M., Eyal, A.: Automatic ontology matching using application semantics. AI Magazine 26(1) (2005)Google Scholar
  9. 9.
    Gerard, N., Lesser, V.: Blackboard Systems for Knowledge-Based Signal Understanding, Symbolic and Knowledge-Based Signal Processing. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  10. 10.
    Gerard, S.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by a Computer. Addison-Wesley Publishing Company, Inc., Reading (1989)Google Scholar
  11. 11.
    Vadrevu, S., Davulcu, H., Nagarajan, S.: Ontominer: Bootstrapping and populating ontologies from domain specific websites. In: Proceedings of the First International Workshop on Semantic Web and Databases (2003)Google Scholar
  12. 12.
    Kashyap, V., Ramakrishnan, C., Thomas, C., Sheth, A.: Taxaminer: An experimentation framework for automated taxonomy bootstrapping. International Journal of Web and Grid Services, Special Issue on Semantic Web and Mining Reasoning (September 2005) (to appear)Google Scholar
  13. 13.
    Kilgarriff, A., Grefenstette, G.: Introduction to the special issue on the web as corpus. Computational Linguistics 29(3) (2003)Google Scholar
  14. 14.
    Kilgarriff, A., Rundell, M.: Lexical profiling software and its lexicographical applicationsa case study. In: Proceedings of EURALEX 2002 (2002)Google Scholar
  15. 15.
    Korhonen, A.: Using semantically motivated estimates to help subcategorization acquisition. In: Proceedings of the Joint Conference on Empirical Methods in NLP and Very Large Corpora, pp. 216–223 (2000)Google Scholar
  16. 16.
    Lesser, V., Fennell, R., Erman, L., Reddy, D.R.: Organization of the hearsay ii speech understanding system. IEEE Transactions on Acoustics, Speech, and Signal Processing 23, 11–24 (1975)CrossRefGoogle Scholar
  17. 17.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16 (2001)Google Scholar
  18. 18.
    McCarthy, J.: Generality in artificial intelligence. Communication of ACM 30, 1030–1035 (1987)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    McCarthy, J.: Notes on formalizing context. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (1993)Google Scholar
  20. 20.
    Papatheodorou, C., Vassiliou, A., Simon, B.: Discovery of ontologies for learning resources using word-based clustering. In: Proceedings of the World Conference on Educational Multimedia, Hypermedia and Telecommunications (ED-MEDIA 2002), pp. 1523–1528 (2002)Google Scholar
  21. 21.
    Turner, R.M.: A model of explicit context representation and use for intelligent agents. In: Bouquet, P., Serafini, L., Brézillon, P., Benercetti, M., Castellani, F. (eds.) CONTEXT 1999. LNCS (LNAI), vol. 1688, p. 375. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  22. 22.
    Turney, D.P.: Mining the web for lexical knowledge to improve keyphrase extraction: Learning from labeled and unlabeled data. ERB-1096 NRC #44947. National Research Council, Institute for Information Technology (2002)Google Scholar
  23. 23.
    Valdes-Perez, R.E., Pereira, F.: Concise, intelligible, and approximate profiling of multiple classes. International Journal of Human-Computer Studies, 411–436 (2000)Google Scholar
  24. 24.
    Williams, T., Lowrance, J., Hanson, A., Riseman, E.: Model-building in the visions system. In: Proceedings of IJCAI 1977 (1977)Google Scholar
  25. 25.
    Xu, J.L.: Multilingual search on the world wide web. In: Proceedings of the Hawaii International Conference on System Science, HICSS-33 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aviv Segev
    • 1
  1. 1.Israel Institute of TechnologyTechnionHaifaIsrael

Personalised recommendations