Designing the Context Matching Engine for Evaluating and Selecting Context Information Sources

  • Maria Chantzara
  • Miltiades Anagnostou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3946)


The easy creation of context-aware services requires the support of management facilities that provide ways to more easily acquire, represent and distribute context information. This paper claims that the quality level of a context-aware service determines the context information to be obtained. On the other hand, using context data produced by unsteady sources may affect the users’ satisfaction. In this perspective, we introduce the Context Matching Engine that trades off the cost, the user preferences and the quality of the available context information in order to discover the best context sources for each customized context-aware service. According to the proposed approach, there is no need for the services to know beforehand the context providers to retrieve information, but the evaluation and the quality-aware selection of the context information on context request are envisioned. Finally, it allows services to be ported easily to environments with different set of context sources.


Context Information Knapsack Problem Context Data Context Evaluation Match Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dey, A.: Understanding and Using Context. Personal and Ubiquitous Computing Journal 5(1), 4–7 (2001)CrossRefGoogle Scholar
  2. 2.
    Henricksen, K., Indulska, J.: Modelling and Using Imperfect Context Information. In: Proceedings of the Workshop of the Advanced Context Modelling, Reasoning and Management associated with the Sixth International Conference on Ubiquitous Computing (UbiComp 2004), Nottingham/England (September 2004)Google Scholar
  3. 3.
    Buchholz, T., Küpper, A., Schiffers, M.: Quality of Context: What it is and Why We Need It. In: Proceedings of the Workshop of the HP OPenView University Association 2003 (HPOVUA 2003), Genevy (July 2003)Google Scholar
  4. 4.
    Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling Context Information in Pervasive Computing Systems. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414, pp. 167–180. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Judd, G., Steenkiste, P.: Providing Contextual Information to Pervasive Computing Applications. In: Proceedings of the 1st IEEE International Conference on Pervasive Computing and Communications (PerCom 2003) (2003)Google Scholar
  6. 6.
    Xynogalas, S., Chantzara, M., Sygkouna, I., Vrontis, S., Roussaki, S., Anagnostou, M.: Context Management for the Provision of Adaptive Services to Roaming Users. IEEE Wireless Communications 11(2), 40–47 (2004)CrossRefGoogle Scholar
  7. 7.
    Meneses, F.: Context Management for Heterogeneous Administrative Domains. In: Ferscha, A., et al. (eds.) Advances in Pervasive Computing. Austrian Computer Society, Austria (2004)Google Scholar
  8. 8.
    Hegering, H., Kupper, A., Linnhoff-Popien, C., Reiser, H.: Management Challenges of Context-Aware Services in Ubiquitous Environments. In: Brunner, M., Keller, A. (eds.) DSOM 2003. LNCS, vol. 2867, pp. 246–259. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    CONTEXT: Active Creation, Delivery and Management of efficient Context Aware Services. IST-2001-38142- CONTEXT,
  10. 10.
    Razzaque, M., Dobson, S., Nixon, P.: Categorisation and Modelling of Quality in Context Information. In: Proceedings of the IJCAI 2005 Workshop on AI and Autonomic Communications, Edinburgh. Scotland (August 2005)Google Scholar
  11. 11.
    Pipino, L., Lee, Y., Wang, R.: Data Quality Assessment. Communications of the ACM 45(4), 211–218 (2002)CrossRefGoogle Scholar
  12. 12.
    Cohen, N., Castro, P., Misra, A.: Descriptive Naming of Context Data Providers. In: Dey, A.K., Kokinov, B., Leake, D.B., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 112–125. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems, p. 546. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  14. 14.
    Hifi, M., Micrafy, M., Sbihi, A.: Heuristic Algorithms for the Multiple-choice Multidimensional Knapsack Problem. Journal of the Operational Research Society 55, 1323–1332 (2004)CrossRefMATHGoogle Scholar
  15. 15.
    Akbar, M., Rahman, S., Kaykobad, M., Manning, E., Shoja, G.: Solving the Multidimensional Multiple-choice Knapsack Problem by Constructing Convex Hulls. To appear in Computers & Operations Research. Elsevier Science, AmsterdamGoogle Scholar
  16. 16.
    Khan, S.: Quality Adaptation in a Multi-session Adaptive Multimedia System: Model, Algorithms and Architecture. PhD Thesis. Department of Electronical and Computer Engineering. University of Victoria, Canada (1998)Google Scholar
  17. 17.
    Khan, S., Li, K., Manning, E., Akbar, M.: Solving the Knapsack Problem for Adaptive Multimedia Systems. Studia Informatica. Special Issue on Combinatorial Problems 2(1) (2002); ISBN 2-912590-13-2. ISSN Regular 1625-7525Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maria Chantzara
    • 1
  • Miltiades Anagnostou
    • 1
  1. 1.Computer Networks Laboratory, School of Electrical & Computer EngineeringNational Technical University of Athens (NTUA)AthensGreece

Personalised recommendations