Using Activity Theory to Model Context Awareness

  • Anders Kofod-Petersen
  • Jörg Cassens
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3946)


One of the cornerstones of any intelligent entity is the ability to understand how occurrences in the surrounding world influence its own behaviour. Different states, or situations, in its environment should be taken into account when reasoning or acting. When dealing with different situations, context is the key element used to infer possible actions and information needs. The activities of the perceiving agent and other entities are arguably one of the most important features of a situation; this is equally true whether the agent is artificial or not.

This work proposes the use of Activity Theory to first model context and further on populate the model for assessing situations in a pervasive computing environment. Through the socio-technical perspective given by Activity Theory, the knowledge intensive context model, utilised in our ambient intelligent system, is designed.


Activity Theory Pervasive Computing Ambient Intelligence Context Awareness Task Context 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiser, M.: The computer for the 21st century. Scientific American, 94–104 (1991)Google Scholar
  2. 2.
    Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal Communications 8, 10–17 (2001)CrossRefGoogle Scholar
  3. 3.
    Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: ISTAG Scenarios for Ambient Intelligence in 2010. Technical report, IST Advisory Group (2001)Google Scholar
  4. 4.
    Lueg, C.: Representaion in Pervasive Computing. In: Proceedings of the Inaugural Asia Pacific Forum on Pervasive Computing (2002)Google Scholar
  5. 5.
    Newell, A.: The Knowledge Level. Artificial Intelligence 18, 87–127 (1982)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lueg, C.: Looking under the rug: On context-aware artifacts and socially adept technologies. In: Proceedings of the Workshop The Philosophy and Design of Socially Adept Technologies at the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI 2002), National Research Council Canada NRC 44918 (2002)Google Scholar
  7. 7.
    Latour, B.: Science in Action: How to Follow Scientists and Engineers Through Society. Harvard University Press (1988)Google Scholar
  8. 8.
    Suchman, L.A.: Plans and Situated Actions: The Problem of Human-Machine Communication. Cambridge University Press, New York (1987)Google Scholar
  9. 9.
    Fitzpatrick, G.: The Locales Framework: Understanding and Designing for Cooperative Work. Ph.d. thesis, The University of Queensland, Australia (1998)Google Scholar
  10. 10.
    Vygotski, L.S.: Mind in Society. Harvard University Press, Cambridge (1978)Google Scholar
  11. 11.
    Vygotski, L.S.: Ausgewählte Schriften Bd. 1: Arbeiten zu theoretischen und methodologischen Problemen der Psychologie. Pahl-Rugenstein, Köln (1985) Google Scholar
  12. 12.
    Leont’ev, A.N.: Activity, Consciousness, and Personality. Prentice-Hall, Englewood Cliffs (1978)Google Scholar
  13. 13.
    McSherry, D.: Mixed-Initative Dialogue in Case-Based Reasoning. In: Workshop Proceedings ECCBR 2002, Aberdeen (2002)Google Scholar
  14. 14.
    Totterdell, P., Rautenbach, P.: Adaptation as a Design Problem. In: Adaptive User Interfaces, pp. 59–84. Academic Press, London (1990)Google Scholar
  15. 15.
    Polanyi, M.: Personal Knowledge: Towards a Post-critical Philosophy. Harper & Row, N.Y (1964)Google Scholar
  16. 16.
    Ekbia, H.R., Maguitman, A.G.: Context and relevance: A pragmatic approach. In: Akman, V., Bouquet, P., Thomason, R.H., Young, R.A. (eds.) CONTEXT 2001. LNCS (LNAI), vol. 2116, pp. 156–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Lenat, D.: The Dimensions of Context-Space. Technical report, Cycorp, Austin, TX (1998)Google Scholar
  18. 18.
    Brooks, R.A.: Planning is Just a Way of Avoiding Figuring Out What to Do Next. Technical report, MIT (1987)Google Scholar
  19. 19.
    Brooks, R.A.: Intelligence without Representation. Artificial Intelligence 47, 139–159 (1991)CrossRefGoogle Scholar
  20. 20.
    Brooks, R.A.: New Approaches to Robotics. Science 253, 1227–1232 (1991)CrossRefGoogle Scholar
  21. 21.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin (1979)Google Scholar
  22. 22.
    Strat, T.M.: Employing contextual information in computer vision. In: DARPA 1993, pp. 217–229 (1993)Google Scholar
  23. 23.
    Öztürk, P., Aamodt, A.: A context model for knowledge-intensive case-based reasoning. International Journal of Human Computer Studies 48, 331–355 (1998)CrossRefGoogle Scholar
  24. 24.
    Zibetti, E., Quera, V., Beltran, F.S., Tijus, C.: Contextual categorization: A mechanism linking perception and knowledge in modeling and simulating perceived events as actions. Modeling and using context, 395–408 (2001)Google Scholar
  25. 25.
    Nardi, B.A.: A Brief Introduction to Activity Theory. KI – Künstliche Intelligenz, 35–36 (2003)Google Scholar
  26. 26.
    Bødker, S.: Activity theory as a challenge to systems design. In: Nissen, H.E., Klein, H., Hirschheim, R. (eds.) Information Systems Research: Contemporary Approaches and Emergent Traditions, pp. 551–564. North Holland, Amsterdam (1991)Google Scholar
  27. 27.
    Nardi, B.A. (ed.): Context and Consciousness. MIT Press, Cambridge (1996)Google Scholar
  28. 28.
    Kutti, K.: Activity Theory as a Potential Framework for Human-Computer Interaction Research. In: [27], pp. 17–44Google Scholar
  29. 29.
    Mwanza, D.: Mind the Gap: Activity Theory and Design. Technical Report KMITR- 95, Knowledge Media Institute, The Open University, Milton Keynes (2000)Google Scholar
  30. 30.
    Kaenampornpan, M., O’Neill, E.: Modelling context: An activity theory approach. In: Markopoulos, P., Eggen, B., Aarts, E., Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 367–374. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Kaenampornpan, M., O’Neill, E.: Integrating History and Activity Theory in Context Aware System Design. In: Proceedings of the 1st International Workshop on Exploiting Context Histories in Smart Environments, ECHISE (2005)Google Scholar
  32. 32.
    Li, Y., Hong, J.I., Landay, J.A.: Topiary: a tool for prototyping location-enhanced applications. In: UIST 2004: Proceedings of the 17th annual ACM symposium on User interface software and technology, pp. 217–226. ACM Press, New York (2004)Google Scholar
  33. 33.
    Wiberg, M., Olsson, C.: Designing artifacts for context awareness. In: Proceedings of IRIS 22 Enterprise Architectures for Virtual Organisations, Jyväskylä, Dept. of Computer Science and Information Systems, pp. 49–58. University of Jyväskylä (1999)Google Scholar
  34. 34.
    Korpela, M., Soriyan, H.A., Olufokunbi, K.C.: Activity analysis as a method for information systems development. Scandinavian Journal of Information Systems 12, 191–210 (2001)Google Scholar
  35. 35.
    Fjeld, M., Lauche, K., Bichsel, M., Voorhoorst, F., Krueger, H., Rauterberg, M.: Physcial and Virtual Tools: Activity Theory Applied to the Design of Groupware. CSCW 11, 153–180 (2002)Google Scholar
  36. 36.
    Bødker, S.: Applying Activity Theory to Video Analysis: How to Make Sense of Video Data in Human-Computer Interaction. In: [27]Google Scholar
  37. 37.
    Quek, A., Shah, H.: A Comparative Survey of Activity-based Methods for Information Systems Development. In: Seruca, I., Filipe, J., Hammoudi, S., Cordeiro, J. (eds.) Proceedings of 6th International Conference on Enterprise Information Systems (ICEIS 2004), Porto, Portugal, vol. 5, pp. 221–229 (2004)Google Scholar
  38. 38.
    Cassens, J.: Knowing What to Explain and When. In: Gervás, P., Gupta, K.M. (eds.) Proceedings of the ECCBR 2004 Workshops. Number 142-04 in Technical Report of the Departamento de Sistemas Informáticos y Programación, Universidad Complutense de Madrid, Madrid, pp. 97–104 (2004)Google Scholar
  39. 39.
    Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing 5, 4–7 (2001)CrossRefGoogle Scholar
  40. 40.
    Brézillon, P., Pomerol, J.C.: Contextual knowledge sharing and cooperation in intelligent assistant systems. Le Travail Humain 62, 223–246 (1999)Google Scholar
  41. 41.
    Göker, A., Myrhaug, H.I.: User context and personalisation. In: Workshop proceedings for the 6th European Conference on Case Based Reasoning (2002)Google Scholar
  42. 42.
    Kofod-Petersen, A., Mikalsen, M.: Context: Representation and Reasoning – Representing and Reasoning about Context in a Mobile Environment. Revue d’ Intelligence Artificielle 19, 479–498 (2005)CrossRefGoogle Scholar
  43. 43.
    Aamodt, A.: Knowledge-intensive case-based reasoning in CREEK. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  44. 44.
    Aamodt, A.: Explanation-driven case-based reasoning. In: Wess, S., Althoff, K., Richter, M. (eds.) EWCBR 1993. LNCS, vol. 837, pp. 274–288. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  45. 45.
    Jære, M.D., Aamodt, A., Skalle, P.: Representing temporal knowledge for case-based prediction. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 174–188. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  46. 46.
    Aamodt, A.: Knowledge Acquisition and Learning by Experience – The Role of Case-Specific Knowledge. In: Tecuci, G., Kodratoff, Y. (eds.) Machine Learning and Knowledge Acquisition – Integrated Approaches, pp. 197–245. Academic Press, London (1995)Google Scholar
  47. 47.
    Cassens, J.: User Aspects of Explanation Aware CBR Systems. In: Costabile, M.F., Paternó, F. (eds.) INTERACT 2005. LNCS, vol. 3585, pp. 1087–1090. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  48. 48.
    Kofod-Petersen, A., Mikalsen, M.: An Architecture Supporting implementation of Context-Aware Services. In: Floréen, P., Lindén, G., Niklander, T., Raatikainen, K. (eds.) Workshop on Context Awareness for Proactive Systems (CAPS 2005), Helsinki, Finland, pp. 31–42. HIIT Publications (2005)Google Scholar
  49. 49.
    Lech, T.C., Wienhofen, L.W.M.: AmbieAgents: A Scalable Infrastructure for Mobile and Context-Aware Information Services. In: AAMAS 2005: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 625–631. ACM Press, New York (2005)CrossRefGoogle Scholar
  50. 50.
    Gundersen, O.E., Kofod-Petersen, A.: Multiagent Based Problem-solving in a Mobile Environment. In: Coward, E. (ed.) Norsk Informatikkonferance 2005, NIK 2005, Institutt for Informatikk, Universitetet i Bergen, pp. 7–18 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anders Kofod-Petersen
    • 1
  • Jörg Cassens
    • 1
  1. 1.Department of Computer and Information Science (IDI)Norwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations