A Hybrid Genetic Algorithm/Particle Swarm Approach for Evaluation of Power Flow in Electric Network

  • T. O. Ting
  • K. P. Wong
  • C. Y. Chung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3930)

Abstract

This paper presents an investigation of possible hybrid genetic algorithm / particle swarm optimization approaches to evaluate the flow of electric power in power transmission network. The possible schemes are presented and their performances are illustrated by applying them to the power flow problem of the Klos Kerner 11-busbar system. The performance of the hybrid algorithm in terms of reliability is further improved by applying the optimal values for both inertia weight and mutation probability which are found through parameter sensitivity analyses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saadat, H.: Power system analysis. McGraw-Hill, New York (2004)Google Scholar
  2. 2.
    Iba, K., Suzuki, H., Egawa, M., Watanabe, T.: A method for finding pair of multiple load flow solutions in bulk power systems. IEEE Trans. Power Syst. 5(2), 582–591 (1990)CrossRefGoogle Scholar
  3. 3.
    Grainger, J.J., Stevenson Jr., W.D.: Power system analysis. McGraw-Hill, New York (1994)Google Scholar
  4. 4.
    Chiang, H., Hiu, C., Varaiya, P., Wu, F., Lauby, M.: Chaos in simple power system. IEEE Trans. Power Syst. 4(4), 1407–1417 (1993)CrossRefGoogle Scholar
  5. 5.
    Ajjarapn, V., Lee, B.: Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. IEEE Trans. Power Syst. 7(1), 424–431 (1992)CrossRefGoogle Scholar
  6. 6.
    Wong, K.P., Li, A., Law, M.Y.: Development of constrained-genetic-algorithm load-flow method. IEE Proc. Gener. Transm. Distrib. 144(2) (March 1997)Google Scholar
  7. 7.
    Wong, K.P., Li, A., Law, T.M.Y.: Advanced constrained genetic algorithm load flow method. IEE Proc. Gener. Transm. Distrib. 146(6) (November 1999)Google Scholar
  8. 8.
    Klos, A., Kerner, A.: The non-uniqueness of load-flow solutions. In: Proceedings of 5th Power system computation conference (PSCC), Cambridge, UK, July 1975, vol. 3.1(8) (1975)Google Scholar
  9. 9.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann Arbor (1975)Google Scholar
  10. 10.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, p. 1942. IEEE Press, Los Alamitos (1995)CrossRefGoogle Scholar
  11. 11.
    Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer. In: Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May 4-9 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • T. O. Ting
    • 1
  • K. P. Wong
    • 1
  • C. Y. Chung
    • 1
  1. 1.Computational Intelligence Applications Research Laboratory, Department of Electrical EngineeringThe Hong Kong Polytechnic UniversityKowloon, Hong Kong

Personalised recommendations