Monitoring Glaucomatous Progression: Classification of Visual Field Measurements Using Stable Reference Data

  • Shuanghui Meng
  • Mihai Lazarescu
  • Jim Ivins
  • Andrew Turpin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3930)


Glaucoma is a common disease of the eye that often results in partial blindness. The main symptom of glaucoma is the progressive deterioration of the visual field. Glaucoma management involves monitoring the progress of the disease using regular visual field tests but currently there is no standard method for classifying changes in visual field measurements. Sequence matching techniques typically rely on similarity measures. However, visual field measurements are very noisy, particularly in people with glaucoma. It is therefore difficult to establish a reference data set including both stable and progressive visual fields. We describe method that uses a baseline computed from a query sequence, to match stable sequences in a database collected from volunteers. The results suggest that the new method is more accurate than other techniques for identifying progressive sequences, though there is a small penalty for stable sequences.


Visual Field Query Sequence Real Dataset Stable Sequence Investigative Ophthalmology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitchell, P., Smith, W., Attebo, K., Healey, P.R.: Prevalence of Open-Angle Glaucoma in Australia. The Blue Mountains Eye Study. Ophthalmology 103, 1661–1669 (1996)Google Scholar
  2. 2.
    Rochtchina, E., Mitchell, P.: Projected Number of Australians with Glaucoma in 2000 and 2030. Clin Experiment Ophthalmol 28, 146–148 (2000)CrossRefGoogle Scholar
  3. 3.
    Johnson, C.A., Sample, P.A., Zangwill, L.M., et al.: Structure and Function Evaluation (SAFE): 2. Comparison of Optic Disk and Visual Field Characteristics. American Journal of Ophthalmology 135, 148–154 (2003)CrossRefGoogle Scholar
  4. 4.
    Flammer, J., Drance, S.M., Zulauf, M.: Differential Light Threshold. Arch. Ophthalmol. 102, 704–706 (1984)Google Scholar
  5. 5.
    Heijl, A., Lindgren, G., Olsson, J., Asman, P.: Visual Field Interpretation with Empiric Probability Maps. Arch. Ophthalmol. 107, 204–208 (1989)Google Scholar
  6. 6.
    Katz, J., Congdon, N., Friedman, D.S.: Methodological Variations in Estimating Apparent Progressive Visual Field Loss in Clinical Trials of Glaucoma Treatment. Arch. Ophthalmol. 117, 1137–1142 (1999)Google Scholar
  7. 7.
    Lazarescu, M., Turpin, A.: Classifying Glaucomatous Progression using Decision Trees. In: Proceedings of IASTED International Symposia on Applied Informatics. Innsbruck, Austria, pp. 205–210 (2003)Google Scholar
  8. 8.
    Lin, A., Hoffman, D., Gaasterland, D.E., Caprioli, J.: Neural Networks to Identify Glaucomatous Visual Field Progression. American Journal of Ophthalmology 135, 49–54 (2003)CrossRefGoogle Scholar
  9. 9.
    Morgan, R.K., Feuer, W.J., Anderson, D.R.: Statpac 2 Glaucoma Change Probability. Arch. Ophthalmol. 109, 1690–1692 (1991)Google Scholar
  10. 10.
    Turpin, A., Frank, E., Hall, M., Witten, I.H., Johnson, C.A.: Detecting Progression in Glaucoma using Data Mining Techniques. In: Proceedings of the 5th Pacific Asia Conference on Knowledge Discovery and Data Mining, pp. 136–147 (2001)Google Scholar
  11. 11.
    Spry, P.G., Johnson, C.A., Chauhan, B.C.: Identification of Progressive Glaucomatous Visual Field Loss. Survey of Ophthalmology 47, 158–173 (2002)CrossRefGoogle Scholar
  12. 12.
    Lane, T., Brodley, C.E.: Sequence Matching and Learning in Anomaly Detection for Computer Security. In: Fawcett, H., Provost, S. (eds.) AI Approaches to Fraud Detection and Risk Management, pp. 43–49. AAAI Press, Menlo Park (1997)Google Scholar
  13. 13.
    Navarro, G.: A Guided Tour to Approximate String Matching. ACM Computing Surveys 33, 31–38 (2001)CrossRefGoogle Scholar
  14. 14.
    Anderson, D.R., Patella, V.M.: Automated Static Perimetry, 2nd edn., Mosby (1999)Google Scholar
  15. 15.
    Spry, P.G., Bates, A.B., Johnson, C.A., Chauhan, B.C.: Simulation of Longitudinal Threshold Visual Field Data. Investigative Ophthalmology and Visual Science 41, 2192–2200 (2000)Google Scholar
  16. 16.
    Vesti, E., Spry, P.G., Chauhan, B.C., Johnson, C.A.: Sensitivity Differences between Real Patient and Computer Stimulated Visual Fields. Journal of Glaucoma 11, 35–45 (2002)CrossRefGoogle Scholar
  17. 17.
    Heijl, A., Lindgren, A., Lindgren, G.: Test-Retest Variability in Glaucomatous Visual Fields. American Journal of Ophthalmology 108, 130–135 (1989)Google Scholar
  18. 18.
    Hughes, A., Grawoig, D.: Statistics: A Foundation for Analysis. Addison-Wesley, Reading (1971)Google Scholar
  19. 19.
    Henson, D.B., Chaudry, S., Artes, P.H., Faragher, E.B., Ansons, A.: Response Variability in the Visual Field: Comparison of Optic Neuritis, Glaucoma, Ocular Hypertension, and Normal Eyes. Investigative Ophthalmology and Visual Science 41, 417–421 (2000)Google Scholar
  20. 20.
    Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures, 2nd edn. Chapman & Hall/CRC (2000)Google Scholar
  21. 21.
    Vesti, E., Johnson, C.A., Chauhan, B.C.: Comparison of Different Methods for Detecting Glaucomatous Visual Field Progression. Investigative Ophthalmology and Visual Science 44, 3873–3879 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shuanghui Meng
    • 1
  • Mihai Lazarescu
    • 1
  • Jim Ivins
    • 1
  • Andrew Turpin
    • 2
  1. 1.Department of ComputingCurtin University of TechnologyPerth
  2. 2.School of Computing Science & Information TechnologyRMITMelbourneAustralia

Personalised recommendations