Advertisement

On the Local Reduction of Information System

  • Degang Chen
  • Eric C. C. Tsang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3930)

Abstract

In this paper the definition of local reduction is proposed to describe the minimal description of a definable set by attributes of the given information system. The local reduction can present more optimal description for single decision class than the existing relative reductions. It is proven that the core of reduction or relative reduction can be expressed as the union of the cores of local reductions. The discernibility matrix of reduction and relative reduction can be obtained by composing discernibility matrixes of local reduction.

Keywords

Relative Reduction Decision System Decision Class Local Reduction Conditional Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems, Intelligent Decision support. In: Slowinski, R. (ed.) Handbook of applications and advances of the rough sets theory. Kluwer Academic Publishers, Dordrecht (1992)Google Scholar
  3. 3.
    Wu, W.-Z., Zhang, M., Li, H.-Z., Mi, J.-S.: Knowledge reduction in random information systems via Dempster–Shafer theory of evidence. Information Sciences (in Press)Google Scholar
  4. 4.
    Wang, G.Y., Yu, H., Yang, D.C.: Decision table reduction based on conditional information entropy. Chinese J. Computers 25(7), 759–766 (2002)MathSciNetGoogle Scholar
  5. 5.
    Beynon, M.: Reducts within the variable precision rough sets model: A further investigation. European Journal of Operational Research 134(3), 592–605 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Lzak, D., Ziarko, W.: Attribute Reduction in the Bayesian Version of Variable Precision Rough Set Model. Electronic Notes in Theoretical Computer Science 82(4), 1–11 (2003)CrossRefGoogle Scholar
  7. 7.
    Mi, J.-S., Wu, W.-Z., Zhang, W.-X.: Approaches to knowledge reduction based on variable precision rough set model. Information Sciences 159(3-4), 255–272 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kryszkiewicz, M.: Rough set approach to incomplete information systems. Information Sciences 112(1-4), 39–49 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Leung, Y., Li, D.: Maximal consistent block technique for rule acquisition in incomplete information systems. Information Sciences 153, 85–106 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Swiniarski, R.W., Skowron, A.: Rough set methods in feature selection and recognition. Pattern Recognition Letters 24(6), 833–849 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Wenxiu, Z., Jusheng, M., Weizhi, W.: Approaches to knowledge reductions in inconsistent systems. International Journal of Intelligent Systems 18, 989–1000 (2003)CrossRefGoogle Scholar
  12. 12.
    Kryskiewicz, M.: Comparative study of alternative types of knowledge reduction in inconsistent systems. International Journal of Intelligent Systems 16, 105–120 (2001)CrossRefGoogle Scholar
  13. 13.
    Degang, C.: The part reduction in information systems. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 477–482. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Degang Chen
    • 1
  • Eric C. C. Tsang
    • 2
  1. 1.Department of Mathematics and PhysicsNorth China Electric Power UniversityBeijingP.R. China
  2. 2.Department of ComputingHong Kong Polytechnic UniversityKowloon, Hong Kong

Personalised recommendations