Advertisement

Reasoning the Spatiotemporal Relations Between Time Evolving Indeterminate Regions

  • Lei Bao
  • Xiao-Lin Qin
  • Jun Zhang
  • Qi-Yuan Li
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3930)

Abstract

Temporal and spatial reasoning are two important parts of Artificial Intelligence and they have important applications in the fields of GIS (geographic information system), Spatiotemporal Database, CAD/CAM etc. The development of temporal reasoning and spatial reasoning includes three aspects: Ontology, representation models and reasoning methods. This paper checks the correspondence between spatiotemporal relations and the 3D topological relations and presents a relation analysis model for indeterminate evolving 2D regions. It extends the 2D Egg/Yolk model into the third dimension that can describe the approximate topological relations for indeterminate evolving regions. The result is a collection of relation clusters that have different spatiotemporal natures.

Keywords

Topological Relation Spatial Reasoning Relation Cluster Spatiotemporal Relation Spatiotemporal Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schneider, M.: Finite resolution crisp and fuzzy spatial objects. In: Proceedings of the 9th International Symposium on Spatial Data Handling, pp. 3–17. International Geographical Union, Beijing (2000)Google Scholar
  2. 2.
    Winter, S.: Uncertainty of topological relations in GIS. In: Proceedings of ISPRS Commission III Symposium: Spatial Information from Digital Photogrammetry and Computer Vision, Bellingham, pp. 924–930 (1994)Google Scholar
  3. 3.
    Clementini, E., Felice, D.: Approximate topological relations. International Journal of Approximate Reasoning 16(2), 173–204 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cohn, A.G., Gotts, N.M.: The ‘Egg-Yolk’ representation of regions with indeterminate boundaries. In: Burrough, P.A., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 171–187. Taylor & Francis, London (1996)Google Scholar
  5. 5.
    Andrew, U.F.: Qualitative spatial reasoning about cardinal directions. In: Proc. of the 7th Austrian Conf. on Artificial Intelligence, Baltimore, pp. 157–167 (1991)Google Scholar
  6. 6.
    Christian, F.: Using orientation information for qualitative spatial reasoning. In: Proc. of the Int’l. Conf. on GIS, pp. 162–178. Springer, Berlin (1992)Google Scholar
  7. 7.
    Roop, G., Egenhofer, M.: Similarity of Cardinal Directions. In: Advances in Spatial and Temporal Databases, pp. 36–55. Springer, Redondo Beach (2001)Google Scholar
  8. 8.
    Wolter, F., Zakharyaschev, M.: Qualitative spatio-temporal representation and reasoning: A computational perspective. In: Exploring Artificial Intelligence in the New Millenium, San Francisco, pp. 175–216 (2002)Google Scholar
  9. 9.
    Bennett, B., Cohn, G., Wolter, F., Zakharyaschev, M.: Multi-Dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence 3(4), 239–251 (2002)CrossRefGoogle Scholar
  10. 10.
    Asher, N., Vieu, L.: Towards a geometry of common sense: A semantics and a complete axiomatisation of mereotopology. In: Proc. of the 14th Int’l Joint Conf. on Artificial Intelligence, Montréal, pp. 846–852 (1995)Google Scholar
  11. 11.
    Muller: Topological spatio-temporal reasoning and representation. Computational Intelligence 18(3), 420–450 (2002)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Medak, D.: Lifestyles—A paradigm for the description of spatiotemporal databases, Ph.D. Thesis. Technical University Vienna, Vienna (1999)Google Scholar
  13. 13.
    Viqueira, J.R.R.: Relational algebra for spatio-temporal data management. In: Proc. of the EDBT, Ph.D. Workshop. Konstanz, pp. 235–243 (2000)Google Scholar
  14. 14.
    Claramunt, C.: Extending Ladkin’s algebra on non-convex intervals towards an algebra on union-of regions. In: Proc. of the 8th ACM Symp. on GIS, Washington, pp. 9–14 (2000)Google Scholar
  15. 15.
    Ladkin, P.B.: The logic of time representation, Ph.D. Thesis. University of California at Berkeley, Berkekey (1987)Google Scholar
  16. 16.
    Muller: A qualitative theory of motion based on spatio-temporal primitives. In: Proc. of the 6th Int’l. Conf. on Knowledge Representation and Reasoning, Trento, pp. 131–143 (1998)Google Scholar
  17. 17.
    Erwig, M., Schneider, M.: Spatio-Temporal predicates. IEEE Trans. on Knowledge and Data Engineering 14(4), 881–901 (2002)CrossRefGoogle Scholar
  18. 18.
    Tossebro, E., Nygard, M.: Uncertainty in Spatiotemporal Databases. In: Proc. 2nd Biennial Int. Conference on Advances in Information Systems, pp. 43–53 (2002)Google Scholar
  19. 19.
    Lei, B., Xiao-Lin, Q.: The Overview of Grey Spatiotemporal Data Types. In: 2nd Asian Workshop on Foundations of Software, Nanjing, pp. 53–57 (2003)Google Scholar
  20. 20.
    Wolfson, O.: Querying the Uncertain Position of Moving Objects. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Dagstuhl Seminar 1997. LNCS, vol. 1399, p. 310. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lei Bao
    • 1
    • 2
  • Xiao-Lin Qin
    • 1
  • Jun Zhang
    • 1
  • Qi-Yuan Li
    • 2
  1. 1.College of Information Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing
  2. 2.College of Electronics EngineeringNavy University of EngineeringWuhan

Personalised recommendations