Speckle Suppressing Based on Fuzzy Generalized Morphological Filter

  • Lihui Jiang
  • Yanying Guo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3930)


A new filtering scheme using fuzzy generalized morphological operators is proposed for suppressing speckle noise in images. The algorithm employs generalized morphological close-open and open-close operations with a directional structuring element, and acquires the several filtered versions with different directional structure elements respectively, then computes the fuzzy membership of the versions’ every pixel according to the designed fuzzy rule. The final filtered image is composed of all the pixels with corresponding maximal membership. Experiment result shows that performance of the proposed scheme is superior to that of lee’s filter, F.safa’s algorithm and weighted morphological filter.


Synthetic Aperture Radar Fuzzy Membership Synthetic Aperture Radar Image Noisy Image Speckle Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, J.S.: Speckle suppression and analysis for synthetic aperture radar. Opt. Eng. 25(5), 636–643 (1986)Google Scholar
  2. 2.
    Kuan, D.T., Sawchuk, A.A., Strand, T.C., Chavel, P.: Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Signal Processing ASSP-35(2), 373–383 (1987)CrossRefGoogle Scholar
  3. 3.
    Frost, V.S., Stiles, J.A., Shanmugan, K.S., Holtzman, J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Machine Intell. PAMI-4(1), 157–165 (1982)CrossRefGoogle Scholar
  4. 4.
    Tukey, J.W.: Exploratory data analysis, pp. 18–68. Addison-Wesley, MA (1997)Google Scholar
  5. 5.
    Grimmins, T.R.: Geometric filter for reducing speckle. Opt. Eng. 25(4), 652–654 (1986)Google Scholar
  6. 6.
    Dong, Y., Forster, B.C., Milne, A.K., Morgan, G.A.: Speckle suppression using recur-sive wavelet transform. Int. J. Remote Sensing 19(2), 317–310 (1998)Google Scholar
  7. 7.
    Safa, F., Fiouzar, G.: Speckle removal based on mathematical morphology. Signal Processing 16(4), 320–333 (1989)CrossRefGoogle Scholar
  8. 8.
    Sedaaghi, M.H., Wu, Q.H.: Weighted morphological filter. Electronics Letters 34(16), 1566–1567 (1998)CrossRefGoogle Scholar
  9. 9.
    Lee, J.S., Jurkevich, I., Dewalle, P., Wambacq, P., Oosterlink, A.: Speckle filtering of synthetic aperture radar images: A review. Remote Sensing Rev. 8(4), 313–340 (1994)Google Scholar
  10. 10.
    ChunHui, Z., ShengHe, S., JingLu, Q.: A generalized morphological filter based on adaptive weighted average. Chinese Journal of Electronics 6(3), 76–81 (1997)Google Scholar
  11. 11.
    Yang, X., Toh, P.S.: Adaptive fuzzy multilevel median filter. IEEE Trans. on Image Processing 4(5), 680–682 (1995)CrossRefGoogle Scholar
  12. 12.
    Dewaele, P., Wambacq, P., Oosterlinck, A., et al.: Comparison of some speckle reduction techniques for SAR Images. In: IGRASS 1990, pp. 2417–2422. The University of Maryland college Park, Maryland (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lihui Jiang
    • 1
  • Yanying Guo
    • 1
  1. 1.Tianjin Key Lab for Advanced Signal ProcessingCivil Aviation University of ChinaTianjinP.R. China

Personalised recommendations