A Learning-Based Spatial Processing Method for the Detection of Point Targets

  • Zhijun Liu
  • Xubang Shen
  • Hongshi Sang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3930)


In this paper, we present an efficient learning-based method for the detection of point targets in images. In the scheme, the probabilistic visual learning (PVL) technique is used for modeling the appearance of point targets and constructing a saliency measure function. Based on this function and the feature vector extracted at each pixel position and a target saliency map is formed by lexicographically scanning the input image. We treat such saliency map as a spatially filtered result of input image. Experimental results show that the proposed algorithm outperforms other filter-based methods.


Feature Vector Input Image Training Image Point Target Propose Detection Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Soni, T., Zeidler, J.R., Ku, W.H.: Performance evaluation of 2-D adaptive prediction filters for detection of point targets in image data. IEEE Trans. Image Process. 2, 327–340 (1993)CrossRefGoogle Scholar
  2. 2.
    Ffrench, P.A., Zeidler, J.R., Ku, W.H.: Enhanced detectability of point targets in correlated clutter using an improved 2-D adaptive lattice algorithm. IEEE Trans. Image Process. 6, 383–397 (1997)CrossRefGoogle Scholar
  3. 3.
    Sang, H.S., Shen, X.B., Chen, C.Y.: Architecture of a configurable 2-D adaptive filter used for small object detection and digital image processing. Opt. Eng. 42, 2182–2189 (2003)CrossRefGoogle Scholar
  4. 4.
    Barnett, J.T., Billard, B.D., Lee, C.: Nonlinear morphological processors for point-target detection versus an adaptive linear spatial filter: a performance comparison. In: Proc. SPIE Int. Soc. Opt. Eng., vol. 1954, pp. 12–24 (1993)Google Scholar
  5. 5.
    Deshpande, S.D., Er, M.H., Ronda, V., Chan, P.: Max-Mean and Max-Median filters for detection of small-targets. In: Signal and Data Processing of Small Targets SPIE, vol. 3809, pp. 74–83 (1999)Google Scholar
  6. 6.
    Moon, Y.S., Zhang, T.X., Zuo, Z.R., Zuo, Z.: Detection of Sea Surface Small Targets in Infrared Images Based on Multilevel Filter and Minimum Risk Bayes Test. Int. J. Patt. Recogn. Artif. Intell. 14, 907–918 (2000)Google Scholar
  7. 7.
    Shirvaikar, M.V., Trivedi, M.M.: A neural network filter to detect small targets in high clutter backgrounds. IEEE Trans. Neural Networks 6, 252–257 (1995)CrossRefGoogle Scholar
  8. 8.
    EI-Naqa, I., Yongyi, Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.M.: A support vector machine approach for detection of microcalcifications. IEEE Trans. Medical Imaging 21, 1552–1563 (2002)CrossRefGoogle Scholar
  9. 9.
    Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Anal. Mach. Intell. 19, 696–710 (1997)CrossRefGoogle Scholar
  10. 10.
    Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986)Google Scholar
  11. 11.
    Anderson, K.L., Iltis, R.A.: A tracking algorithm for infrared images based on reduced sufficient statistics. IEEE Trans. Aerospace and Electronic System 33, 464–472 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhijun Liu
    • 1
  • Xubang Shen
    • 1
  • Hongshi Sang
    • 1
  1. 1.Institute for Pattern Recognition and Artificial IntelligenceHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations